
PoC||GTFOPoC||GTFOP
r
o
o
f

C
o
n
c
e
p
t

G
e
t

T
h
e

F
u
c
k

O
u
t

o r

fo

PASTOR LAPHROAIG SCREAMSPASTOR LAPHROAIG SCREAMS

HIGH FIVE TO THE HEAVENSHIGH FIVE TO THE HEAVENS

AS THE WHOLEAS THE WHOLE WORLD GOES UNDERWORLD GOES UNDER

0, $0 USD, $0 AUD, 10s 6d GBP, 0 RSD, 0 SEK, $50 CAD, 6× 1029 Pengő (3× 108 Adópengő).
The MD5 hash of this PDF is . March 20, 2017.
Gott bewahre mich vor jemand, der nur ein Büchlein gelesen hat; это самиздат.

14:0214:02 Z-Ring PhreakingZ-Ring Phreaking

14:0314:03 Concerning Desert StudiesConcerning Desert Studies

14:0414:04 Flush+Reload Side-Channel AttacksFlush+Reload Side-Channel Attacks

14:0514:05 Anti-Keylogging with Random NoiseAnti-Keylogging with Random Noise

14:0614:06 Random NOPs on ARMRandom NOPs on ARM

14:0714:07 Ethernet Over GDBEthernet Over GDB

14:0814:08 Control Panel VulnerabilitiesControl Panel Vulnerabilities

14:0914:09 MD5 PostscriptMD5 Postscript

14:1014:10 MD5 PDFMD5 PDF

14:1114:11 MD5 GIFMD5 GIF

14:1214:12 This PDF is an NES MD5 QuineThis PDF is an NES MD5 Quine

Legal Note: Tip your bartender.

Reprints: Bitrot will burn libraries with merciless indignity that even Pets Dot Com didn’t deserve. Please
mirror—don’t merely link!—pocorgtfo14.pdf and our other issues far and wide, so our articles can help fight
the coming flame deluge. We like the following mirrors.
https://unpack.debug.su/pocorgtfo/

https://pocorgtfo.hacke.rs/

https://www.alchemistowl.org/pocorgtfo/

https://www.sultanik.com/pocorgtfo/

Technical Note: This file, pocorgtfo14.pdf, is a polyglot valid as a Nintendo Entertainment Sys-
tem (NES) ROM cartridge, a PDF document, and a ZIP archive. We collided 9,824 MD5 block pairs
to place the hash of this document on its front cover and the title screen of the NES game, but only 609 of
them made it to the final release.

Cover Art: The cover illustration from this issue is by William E. Damon, first published in Ocean

Wonders: A Companion for the Seaside in 1879.

Printing Instructions: Pirate print runs of this journal are most welcome! PoC‖GTFO is to be printed
duplex, then folded and stapled in the center. Print on A3 paper in Europe and Tabloid (11” x 17”) paper in
Samland, then fold to get a booklet in A4 or Letter size. Secret volcano labs in Canada may use P3 (280 mm
x 430 mm) if they like, folded to make P4. The outermost sheet should be on thicker paper to form a cover.

This is how to convert an issue for duplex printing.

sudo apt-get install pdfjam

pdfbook --short-edge --vanilla --paper a3paper pocorgtfo14.pdf -o pocorgtfo14-book.pdf

Man of The Book Manul Laphroaig
Editor of Last Resort Melilot
TEXnician Evan Sultanik
Editorial Whipping Boy Jacob Torrey
Funky File Supervisor Ange Albertini
Assistant Scenic Designer Philippe Teuwen

and sundry others

2

14:01 Let us share some water

Neighbors, please join me in reading this fif-
teenth release of the International Journal of Proof
of Concept or Get the Fuck Out, a friendly little
collection of articles for ladies and gentlemen of dis-
tinguished ability and taste in the field of reverse
engineering and the study of weird machines. This
release is a gift to our fine neighbors in Heidelberg,
Canberra, and Miami.

If you are missing the first fourteen issues, we
suggest asking a neighbor who picked up a copy of
the first in Vegas, the second in São Paulo, the third
in Hamburg, the fourth in Heidelberg, the fifth in
Montréal, the sixth in Las Vegas, the seventh from
his parents’ inkjet printer during the Thanksgiv-
ing holiday, the eighth in Heidelberg, the ninth in
Montréal, the tenth in Novi Sad or Stockholm, the
eleventh in Washington D.C., the twelfth in Heidel-
berg, the thirteenth in Montréal, or the fourteenth
release in São Paulo, San Diego, or Budapest.

After our paper release, and only when quality
control has been passed, we will make an electronic
release named pocorgtfo14.pdf. It is a valid PDF,
ZIP, and a cartridge ROM for the Nintendo Enter-
tainment System (NES).

On page 5, Vicki Pfau shares with us the story
of how she reverse engineered the Pokémon Z-Ring,
an accessory for the Nintendo 3DS whose wireless
connection uses audio, rather than radio. In true
PoC‖GTFO spirit, she then re-implements this pro-
tocol for the classic GameBoy.

Pastor Manul Laphroaig is back with a new
sermon on page 12 concerning Liet Kynes, water,
Desert Studies, and the Weirding Way.

Taylor Hornby on page 14 shares with us some
handy techniques for communicating between pro-
cessors by reading shared memory pages, without
writes.

Mike Meyers on page 19 shares some tricks for
breaking Windows user-mode keyloggers through
the injection of fake events.

Niek Timmers and Albert Spruyt consider a
rather specific, but in these days important, ques-
tion in exploitation: suppose that there is a region
of memory that is encrypted, but not validated or
write-protected. You haven’t got the key, so you’re
able to corrupt it, but only in multiples of the block
size and only without a clue as to which bits will
become what. On page 26, they calculate the odds
of that corrupted code becoming the equivalent of
a NOP sled in ARM and Thumb, in userland and
kernel, on bare metal and in emulation.

In PoC‖GTFO 13:4, Micah Elizabeth Scott
shared with us her epic tale of hacking a Wacom
tablet. Her firmware dump in that article depended
upon voltage-glitching a device over USB, which is
made considerably easier by underclocking both the
target and the USB bus. That was possible because
she used the synchronous clock on an SPI bus to
shuffle USB packets between her underclocked do-
main and realtime. In her latest article, to be found
on page 30, she explains how to bridge an under-
clocked Ethernet network by routing packets over
GDB, OpenOCD, and a JTAG/SWD bus.

3

Geoff Chappel is back again, ready to take you to
a Windows Wonderland, where you will first achieve
a Mad Hatter’s enlightenment, then wonder what
the Caterpillar was smoking. Seven years after the
Stuxnet hype, you will finally get the straight ex-
planation of how its Control Panel shortcuts were
abused. Just as in 2010, when he warned that bugs
might remain, and in 2015 when Microsoft admitted
that bugs did in fact remain, Geoff still thinks that
some funny behaviors are lurking inside of the Con-
trol Panel and .LNK files. You will find his article
on page 37, and remember what the dormouse said!

With the recent publication of a collided SHA1
PDF by the good neighbors at CWI and Google Re-
search, folks have asked us to begin publishing SHA1
hashes instead of the MD5 sums that we tradition-
ally publish. We might begin that in our next re-
lease, but for now, we received a flurry of nifty MD5
collisions. On page 46, Greg Kopf will show you
how to make a PostScript image that contains its
own checksum. On page 50, Mako describes a nifty
trick for doing the same to a PDF, and on page 53
is Kristoffer Janke’s trick for generating a GIF that
contains its own MD5 checksum.

On page 56, the Evans Sultanik and Teran de-
scribe how they coerced this PDF to be an NES
ROM that, when run, prints its own MD5 check-
sum.

On page 60, the last page, we pass around the
collection plate. Our church has no interest in cash
or wooden nickels, but we’d love your donation of a
nifty reverse engineering story. Please send one our
way.

4

14:02 Z-Ring Phreaking from a Gameboy

by Vicki Pfau

At the end of last year (following their usual
three-year cycle), Nintendo released a new gener-
ation of Pokémon games for their latest portable
console, the Nintendo 3DS. This time, their new
entry in the series spectacularly destroyed several
sales records, becoming the most pre-ordered game
in Nintendo’s history. And of course, along with a
new Pokémon title, there are always several things
that follow suit, such as a new season of the long
running anime, a flood of cheapo toys, and datamin-
ing the latest games into oblivion. This article is
not about the anime or the datamining; rather, it’s
about one of the cheapo toys.

The two new games, Pokémon Sun and Pokémon
Moon, focus on a series of four islands known as
Alola in the middle of the ocean. Alola is totally
not Hawaii.1 The game opens with a cutscene of a
mysterious girl holding a bag and running away from
several other mysterious figures. Near the beginning
of the game, the player character runs into this mys-
tery girl, known as Lillie, as she runs up to a bridge,
and a rare Pokémon named Nebby pops out of the
bag and refuses to go back in. It shudders in fear on
the bridge as it’s harried by a pack of birds—sorry,
Flying type—Pokémons. The player character runs
up to protect the Pokémon, but instead gets pecked
at mercilessly.

Nebby responds by blowing up the bridge. The
player and Nebby fall to their certain doom, only
to be saved by the Guardian Pokémon of the is-
land, Tapu Koko, who grabs them right before they
hit the bottom of the ravine. Tapu Koko flies up
to where Lillie is watching in awe, and delivers the
pair along with an ugly stone that happens to have
a well-defined Z shape on it. This sparkling stone
is crafted by the kahuna of the island2 into what is
known as a Z-Ring. So obviously there’s a toy of
this.

In the game, the Z-Ring is an ugly, bulky stone
bracelet given to random 11-year old children. You
shove sparkling Z-Crystals onto it, and it lets you
activate special Z-Powers on your Pokémon, unlock-
ing super-special-ultimate Z-Moves to devastate an
opponent. In real life, the Z-Ring is an ugly, bulky
plastic bracelet given to random 11-year old chil-
dren. You shove plastic Z-Crystals onto it, and it
plays super-compressed audio as lights flash, and
the ring vibrates a bit. More importantly, when
you activate a Z-Power in-game, it somehow signals
the physical Z-Ring to play the associated sound, re-
gardless of which cheap plastic polyhedron you have
inserted into it at the time. How does it communi-
cate? Some people speculated about whether the in-
terface was Bluetooth LE or a custom wireless com-
munication protocol, but I have not seen anyone else
reverse it. I decided to dig in myself.

The toy is rather overpriced compared to its
build quality, but, having seen one at a store re-
cently, I decided to pick it up and take a look. Af-
ter all, I’d done only minimal hardware reversing,
and this seemed to be a good excuse to do more.
The package included the Z-Ring bracelet, three Z-
Crystals, and a little Pikachu toy. Trying to unbox
it, I discovered that the packaging was horrendous.
It’s difficult to remove all of the components with-
out breaking anything. I feel sorry for all of the kids
who got this for Christmas and then promptly broke
off Pikachu’s tail as they eagerly tried to remove it
from the plastic.

1Yes it is.
2Did I mention that we’re not in Hawaii? I was lying.

5

The bracelet itself has slots on the sides to hold
six Z-Crystals and one on the top that has the signa-
ture giant Z around it. The slot on the top has three
pogo pins, which connect to pads on a Z-Crystal.
The center of these is GND, with one pin being used
to light the LED through a series resistor (R1, 56 Ω)
and the other pin being used to sense an identity re-
sistor (R2, 18 kΩ for green).

It also has a tri-state switch on the side. One set-
ting (Mode I) is for synchronizing to a 3DS, another
(Mode II) is for role-play and synchronizes with six
tracks on the Sun/Moon soundtrack, and the final
(neutral) setting is the closest thing it has to an off
mode. A button on the side will still light up the
device in the neutral setting, presumably for store
demo reasons.

My first step in trying to reverse engineer the
device was figuring out how to pair it with my 3DS.
Having beaten my copy of Pokémon Sun already, I
presumably had obtained anything needed in-game
to pair with the device, but there was no explicit
mention of the toy in-game. Included in the toy’s
packaging were two tiny pamphlets, one of which
was an instruction manual. However, the instruc-
tion manual was extremely minimal and mostly just
described how to use the toy on its own. The only
thing I could find about the 3DS interface was an
instruction to turn up the 3DS volume and set the
audio to stereo. There was also a little icon of head-
phones with a line through them. I realized that
it didn’t pair with the 3DS at all. It was sound-
triggered!

I pulled out my 3DS, loaded up the game, and
tried using a Z-Power in-game with the associated Z-
Crystal inserted into the top of the toy. Sure enough,
with the sound all the way up, the Z-Ring activated
and synchronized with what the game was doing.

Now that I knew I’d need to record audio from
the game, I pulled up Audacity on my laptop and
started recording game audio from the speakers. Ex-

pecting the audio to be in ultrasonic range, I cranked
up the sample rate to 96 kHz (although whether or
not my laptop microphone can actually detect sound
above 22 kHz is questionable) and stared at it in Au-
dacity’s spectrogram mode. Although I saw a few
splotches at the top of the audible range, playing
them back did not trigger the Z-Ring at all. How-
ever, playing back the whole recording did. I tried
playing subsets of the sample until I found portions
that triggered the Z-Ring. As I kept cropping the
audio shorter and shorter, I finally found what I was
looking for. The trigger wasn’t ultrasonic. It was in
fact completely audible.

When you activate a Z-Power in the game, a
short little jingle always plays. I had previously as-
sumed that the jingle was just for flavor, but when
I looked at it, there were several distinctive lines
on the spectrogram. The very beginning of the jin-
gle included seven different tones, so I tried playing
back that section. Sure enough, the Z-Ring acti-
vated. I cropped it down to the first four tones,
and the Z-Ring would reliably activate and play a
specific sample whenever I played the audio back.
Rearranging the tones, I got it to play back a dif-
ferent sample. That was how to signal the toy, but
now the task was finding all of the samples stored
on the Z-Ring without dumping the ROM.

Looking at the recording in the spectrogram, it
was pretty clear that the first tone, which lasts all
of 40 milliseconds and is a few hundred hertz lower
than the rest of the signal, is a marker indicating
that the next few tones describe which sample to
play back. I quickly reconstructed the four tones
as just sine waves in Audacity to test my hypothe-
sis, and sure enough, I was able to trigger the tones
using the constructed signal as well. However, that
was a tedious process and did not lend itself to being
able to explore and document all of the tone combi-
nations. I knew I needed to write some software to
help me quickly change the tones, so I could docu-
ment all the combinations. Since it looked as if the
signal was various combinations of approximately
four different frequencies, it would take some explo-
ration to get everything.

I’m lazy and didn’t feel like writing a tone gen-
erator and hooking it up to an audio output de-
vice and going through all of the steps I’d need to
get sine waves of programmatically-defined frequen-
cies to come out of my computer. However, I’m a
special kind of lazy, and I really appreciate irony.
The game is for the 3DS, right? What system is

6

Pokémon famous for originating on? The original
Game Boy, a platform with hardware for generating
audible tones! Whereas the 3DS also has a micro-
phone, the audio communication is only used in one
direction. Perfect!

Now, I’d never written a program for the Game
Boy, but I had implemented a Game Boy emula-
tor. Fixing bugs on an emulator requires debug-
ging both the emulator and the emulated software at
the same time, so I’m quite familiar with the Game
Boy’s unique variant of Z80, making the barrier of
entry significantly lower than I thought it would be.
I installed Rednex GameBoy Development System,3

one of the two most popular toolchains for compil-
ing Game Boy homebrew ROMs, and wrote a few
hundred lines of assembly. I figured the Game Boy’s
audio channel 3, which uses 32-sample wavetables of
four-bit audio, would be my best chance to approx-
imate a sine wave. After a bit of experimenting, I
managed to get it to create the right tones. But the
first obstacle to playing back these tones properly
was the timing. The first tone plays for 40 millisec-
onds, and the remaining tones each last 20 millisec-
onds. A frame on the GB is roughly 16 milliseconds
long, so I couldn’t synchronize on frame boundaries,
yet I found a busy loop to be impractical. (Yes, GB
games often use busy loops for timing-sensitive op-
erations.) Fortunately, the GB has a built-in timer
that can fire an interrupt after a given number of
cycles, so, after a bit of math, I managed to get the
timing right. Success! I could play back a series of
tones from a table in RAM with the right timing
and the right frequencies.

100 ms0

5 kHz

0 kHz

Sure enough, when I played this back in an em-
ulator, the Z-Ring activated! The ROM plays the
tones upon boot and had no user interface for config-
uring which tones to play, but recompiling the ROM
was fast enough that it wasn’t really an issue.

The natural next step was uploading the pro-
gram to a real Game Boy. I quickly installed the
program onto a flash cart that I had purchased while
developing the emulator. I booted up my original
Game Boy, the tones played, and. . . the Z-Ring did
not activate. No matter how many times I restarted
the program, the tones would not activate the Z-
Ring. I recorded the audio it was playing, and
the tones were right. I was utterly confused until
I looked a bit closer at the recording: the signal
was getting quieter with every subsequent tone. I
thought that this must be a bug in the hardware, as
the Game Boy’s audio hardware is notorious for hav-
ing different quirks between models and even CPU
revisions. I tried turning off the audio channel and
turning it back on again a few cycles later to see if
that fixed anything. It still worked in the emulator,
so I put it back on the flash cart, and this time it
worked! I could consistently trigger one of the sam-
ples I’d seen, but some of the other ones seemed to
randomly select one of three tones to play. Some-
thing wasn’t quite right with my tone generation, so
I decided to halve the sample period, which would
give me more leeway to finely adjust the frequency.
This didn’t appear to help at all, unfortunately.
Scoping out all of the combinations of the tones I
thought were in range yielded about 30 responses
out of the 64 combinations I tried. Unfortunately,
many of the responses appeared to be the same, and
many of them weren’t consistent. Additionally, sam-
ples I knew the Z-Ring had were not triggered by
any of these combinations. Clearly something was
wrong.

I needed a source of several unique known-good
signals, so I scoured YouTube and found an “All Z-
Moves” video. Sure enough, it triggered from the
Z-Ring a bunch of reactions I hadn’t seen yet. Tak-
ing a closer look, I saw that the signal was actually
all seven tones (not four), so extending the program
to use seven tones suddenly yielded much more con-
sistent results. Great! The bad news was that be-
yond the first, fixed tone, there were four variations
of each subsequent tone, leading to a total of 46

combinations. That’s 4,096. That’s a lot to scope
out. I decided to take another route and catalog ev-

3unzip pocorgtfo14.pdf rgbds.zip

7

ery signal in the video as a known pattern. I could
try other signals later. Slowly, I went through the
video and found every trigger. It seemed that there
were two separate commands per move: one was for
the initial half of the scene, where the Pokémon is
“surrounded by Z-Power,” and then the actual Z-
Move was a separate signal. Unfortunately, three of
the former signals had been unintentionally cropped
from the video, leaving me with holes in my data.
Sitting back and looking at the data, I started notic-
ing patterns. I had numbered each tone from 0 (the
lowest) to 3 (the highest), and every single one of
the first 15 signals (one for each of the 18 Pokémon
types in-game, minus the three missing types) ended
with a 3. Some of the latter 18 (the associated Z-
Powers per type) ended with a 1, but most ended
with a 3. I wasn’t quite sure what that meant until
I saw that other tones were either a 0 or a 2, and the
remainder were either a 1 or a 3. Each tone encoded
only one bit, and they were staggered to make sure
the adjacent bits were differentiable!

This reduced the number of possibilities from
over four thousand to a more manageable sixty-four.
It also lent itself to an easy sorting technique, with
the last bit being MSB and the first being LSB. As I
sorted the data, I noticed that the first 18 fell neatly
into the in-game type ordering, leaving three holes
for the missing types, and the next 18 all sorted
identically. This let me fill in the holes and left
me with 36 of the 64 combinations already filled in.
I also found 11 special, Pokémon-specific (instead
of type-specific) Z-Moves, giving me 47 total signals
and 17 holes left. As I explored the remaining holes,
I found five audio samples of Pikachu saying differ-
ent things, and the other 12 didn’t correspond to
anything I recognized.

In the process, I added a basic user interface to
the Game Boy program that lets you either select
from the presets or set the tones manually. Given
the naming scheme of these Z-Crystals (for any given
type or Pokémon, it would basically just be Typium-
Z, e.g. Fire becomes Firium-Z), I naturally decided
to name it Phreakium-Z.4

I thought I had found all of the Z-Ring’s sound
triggers, but it was pointed out to me while I was
preparing to publish my results that the official
soundtrack release had six “Z-Ring Synchronized”
tracks that interfaced with the Z-Ring. I had al-
ready purchased the soundtrack, so I took a look
and tried playing back the tracks with the Z-Ring
nearby. Nothing happened. More importantly, the
distinctive jingle of the 5 kHz tones was completely
absent from the tracks. So what was I missing? I
tried switching it from Mode I into Mode II, and the
Z-Ring lit up, perfectly synchronizing with the mu-
sic. But where were the triggers? There was noth-
ing visible in the 4–6 kHz range this time around.
Although I could clip portions of tracks down to spe-
cific triggers, I couldn’t see anything in the spectro-
gram until I expanded the visible range all the way
up to 20 kHz. This time the triggers were indeed
ultrasonic or very nearly so.

Human hearing caps out at approximately
20 kHz, but most adults can only hear up to about
15 kHz. The sample rates of sound devices are typ-
ically no greater than 48 kHz, allowing the produc-
tion of frequencies up to 24 kHz, including only a
narrow band of ultrasonic frequencies. Given the
generally poor quality of speakers at extremely high
frequencies, you can imagine my surprise when I saw
a very clear signal at around 19 kHz.

4git clone https://github.com/endrift/phreakium-z; unzip pocorgtfo14.pdf phreakium-z.zip

8

Zooming in, I saw the distinctive pattern of a
lower, longer initial tone followed by several stag-
gered data tones. However, this time it was a 9-bit
signal, with a 60 ms initial tone at exactly 18.5 kHz
and a 20 ms gap between the bits. Unfortunately,
18 kHz is well above the point at which I can get any
fine adjustments in the Game Boy’s audio output, so
I needed to shift gears and actually write something
for the computer. At first I wrote something quick in
Rust, but this proved to be a bit tedious. I realized
I could make something quite a bit more portable:
a JavaScript web interface using WebAudio.5

After narrowing down the exact frequencies used
in the tones and debugging the JavaScript (as it
turns out, I’ve gotten quite rusty), I whipped up
a quick interface that I could use to explore com-
mands. After all, 512 commands is quite a bit more
than the 64 from Mode I.

Despite being a larger number of combinations,
512 was still a reasonable number to explore in a
few hours. After I got the WebAudio version work-
ing consistently, I added the ability to take a num-
ber from 0 to 511 and output the correspondingly
indexed tone, and I began documenting the individ-
ual responses generated. At first I was getting oddly
erratic sequences, until I realized that I was parsing
a base 10 number as a base 16 index. With that
fixed, everything fell into place. I noticed that the
first 64 indices of the 512 were in fact identical to
the 64 Mode I tones, so that was quick to document.
Once I got past the initial 64, I noticed that the re-
sponses from the Z-Ring no longer corresponded to
game actions but were instead more granular single
actions. For example, instead of a sequence of vi-

brations and light colors that corresponded to the
animation of a Z-Move in game, a response included
only one sound effect coupled with one lighting ef-
fect or one lighting effect with one vibration effect.
There was also a series of sound effects that did not
appear in Mode I and that seemed to be linked to
individual Pokémon types. Many of the responses
seemed randomly ordered, almost as though the de-
velopers had added the commands ad hoc without
realizing that ordering similar responses would be
sensible. Huge swaths of the command set ended
up being the Cartesian product of a light color with
a vibration effect. This ended up being enough of
the command set that I was able to document the
remainder of the commands within only a handful
of hours.

Most of the individual commands weren’t inter-
esting, but I did find eight additional Pikachu voice
samples and a rather interesting command that —
when played two or three times in a row — kicked the
Z-Ring into what appeared to be a diagnostic mode.
It performed a series of vibrations followed by a se-
ries of tones unique to this response, after which the
Z-Ring stopped responding to commands. After a
few seconds, the light on the bottom, which is com-
pletely undocumented in the manual and had not il-
luminated before, started blinking, and the light on
top turned red. However, it still didn’t respond to
any commands. Eventually I discovered that switch-
ing it to the neutral mode would change the light to
blue for a few seconds, and then the toy would re-
vert to a usable state. I’m still unsure of whether
this was a diagnostic mode, a program upload mode,
or something completely different.

By this point I’d put in several hours over a
few days into figuring out every nook and cranny of
this device. Having become bored with it, I decided
to bite the bullet and disassemble the hardware. I
found inside a speaker, a microphone, a motor with a
lopsided weight for generating the vibrations, and a
PCB. The PCB, although rather densely populated,
did not contain many interesting components other
than an epoxy blob labeled U1, an MX25L8006E
flash chip labeled U2, and some test points. You
will find a dump of this ROM attached.6 At this
point, I decided to call it a week and put the Z-Ring
back together; it was just a novelty, after all.

5git clone https://github.com/endrift/phreakium-js; unzip pocorgtfo14.pdf phreakium-js.html
6unzip pocorgtfo14.pdf zring-flash.bin

9

These are the 512 commands of the Z-Ring.

000: Normalium-Z

001: Firium-Z

002: Waterium-Z

003: Grassium-Z

004: Electrium-Z

005: Icium-Z

006: Fightium-Z

007: Poisonium-Z

008: Groundium-Z

009: Flyium-Z

00A: Psychium-Z

00B: Buginium-Z

00C: Rockium-Z

00D: Ghostium-Z

00E: Dragonium-Z

00F: Darkium-Z

010: Steelium-Z

011: Fairium-Z

012: Breakneck Blitz

013: Inferno Overdrive

014: Hydro Vortex

015: Bloom Doom

016: Gigavolt Havoc

017: Subzero Slammer

018: All-Out Pummeling

019: Acid Downpour

01A: Tectonic Rage

01B: Supersonic Skystrike

01C: Shattered Psyche

01D: Savage Spin-Out

01E: Continental Crush

01F: Never-Ending Nightmare

020: Devastating Drake

021: Black Hole Eclipse

022: Corkscrew Crash

023: Twinkle Tackle

024: Sinister Arrow Raid (Decidium-Z)

025: Malicious Moonsault (Incinium-Z)

026: Oceanic Operetta (Primarium-Z)

027: Catastropika (Pikachunium-Z)

028: Guardian of Alola (Tapunium-Z)

029: Stoked Sparksurfer (Aloraichium-Z)

02A: Pulverizing Pancake (Snorlium-Z)

02B: Extreme Evoboost (Eevium-Z)

02C: Genesis Supernova (Mewium-Z)

02D: Soul-Stealing 7-Star Strike (Marshadium-Z)

02E: (unknown)

02F: (unknown)

030: 10,000,000 Volt Thunderbolt (Pikashunium-Z)

031: (unknown)

032: (unknown)

033: (unknown)

034: (unknown)

035: (unknown)

036: (unknown)

037: (unknown)

038: (unknown)

039: Pikachu 1

03A: Pikachu 2

03B: Pikachu 3

03C: Pikachu 4

03D: Pikachu 5

03E: (unknown)

03F: (no response)

040: SFX/Light (Normal)

041: SFX/Light (Fire)

042: SFX/Light (Water)

043: SFX/Light (Grass)

044: SFX/Light (Electric)

045: SFX/Light (Ice)

046: SFX/Light (Fighting)

047: SFX/Light (Poison)

048: SFX/Light (Ground)

049: SFX/Light (Flying)

04A: SFX/Light (Psychic)

04B: SFX/Light (Bug)

04C: SFX/Light (Rock)

04D: SFX/Light (Ghost)

04E: SFX/Light (Dragon)

04F: SFX/Light (Dark)

050: SFX/Light (Steel)

051: SFX/Light (Fairy)

052: (no response)

053: Vibration (soft, short)

054: Vibration (soft, medium)

055: Vibration (pattern 1)

056: Vibration (pattern 2)

057: Vibration (pattern 3)

058: Vibration (pattern 4)

059: Vibration (pattern 5)

05A: Vibration (pattern 6)

05B: Vibration (pattern 7)

05C: Vibration (pattern 8)

05D: Vibration (pattern 8)

05E: Vibration (pattern 9)

05F: Vibration (pattern 10)

060: Vibration (pattern 11)

061: Vibration (pattern 12)

062: Vibration (pattern 13)

063: Vibration (pattern 14)

064: Light (yellow)

065: Light (pale blue)

066: Light (white)

067: Light (pattern 1)

068: Light (pattern 2)

069: Vibration (pattern 15)

06A: Vibration (pattern 16)

06B: Light/Vibration (red, very short)

06C: Light/Vibration (red, short)

06D: Light/Vibration (red, medium)

06E: Light (red)

06F: Light (yellow/green)

070: Light (green)

071: Light (blue)

072: Light (purple)

073: Light (pale purple)

074: Light (magenta)

075: Light (pale green)

076: Light (cyan)

077: Light (pale blue/purple)

078: Light (gray)

079: Light (pattern purple, pale purple)

07A: Light/Vibration (pale yellow, short)

07B: Light/Vibration (pale yellow, short)

07C: (no response)

07D: (no response)

07E: Self test/program mode? (reboots afterwards)

07F: Light (pale yellow)

080: Light (pale blue)

081: Light (pale magenta)

082: SFX/Vibration (Normal)

083: SFX/Vibration (Fire)

084: SFX/Vibration (Water)

085: SFX/Vibration (Grass)

086: SFX/Vibration (Electric)

087: SFX/Vibration (Ice)

088: SFX/Vibration (Fighting)

089: SFX/Vibration (Poison)

08A: SFX/Vibration (Ground)

08B: SFX/Vibration (Flying)

08C: SFX/Vibration (Psychic)

08D: SFX/Vibration (Bug)

08E: SFX/Vibration (Rock)

08F: SFX/Vibration (Ghost)

090: SFX/Vibration (Dragon)

091: SFX/Vibration (Dark)

092: SFX/Vibration (Steel)

093: SFX/Vibration (Fairy)

094: Pikachu 1

095: Pikachu 2

096: Pikachu 3

097: Pikachu 4

098: Pikachu 5

099: Vibration (speed 1, hard, 2x)

09A: Vibration (speed 1, hard, 4x)

09B: Vibration (speed 1, hard, 8x)

09C: Vibration (speed 1, hard, 16x)

09D: Vibration (speed 1, pattern, 2x)

09E: Vibration (speed 1, pattern, 4x)

09F: Vibration (speed 1, pattern, 8x)

0A0: Vibration (speed 1, pattern, 16x)

0A1: Vibration (speed 2, hard, 2x)

0A2: Vibration (speed 2, hard, 4x)

0A3: Vibration (speed 2, hard, 8x)

0A4: Vibration (speed 2, hard, 16x)

0A5: Vibration (speed 2, pattern, 2x)

0A6: Vibration (speed 2, pattern, 4x)

0A7: Vibration (speed 2, pattern, 8x)

0A8: Vibration (speed 2, pattern, 16x)

0A9: Vibration (speed 3, hard, 2x)

0AA: Vibration (speed 3, hard, 4x)

0AB: Vibration (speed 3, hard, 8x)

0AC: Vibration (speed 3, hard, 16x)

0AD: Vibration (speed 3, pattern, 2x)

0AE: Vibration (speed 3, pattern, 4x)

0AF: Vibration (speed 3, pattern, 8x)

0B0: Vibration (speed 3, pattern, 16x)

0B1: Vibration (speed 4, hard, 2x)

0B2: Vibration (speed 4, hard, 4x)

0B3: Vibration (speed 4, hard, 8x)

0B4: Vibration (speed 4, hard, 16x)

0B5: Vibration (speed 4, pattern, 2x)

0B6: Vibration (speed 4, pattern, 4x)

0B7: Vibration (speed 4, pattern, 8x)

0B8: Vibration (speed 4, pattern, 16x)

0B9: Vibration (speed 5, hard, 2x)

0BA: Vibration (speed 5, hard, 4x)

0BB: Vibration (speed 5, hard, 8x)

0BC: Vibration (speed 5, hard, 16x)

0BD: Vibration (speed 5, pattern, 2x)

0BE: Vibration (speed 5, pattern, 4x)

0BF: Vibration (speed 5, pattern, 8x)

0C0: Vibration (speed 6, hard, 16x)

0C1: Vibration (speed 6, hard, 2x)

0C2: Vibration (speed 6, hard, 4x)

0C3: Vibration (speed 6, hard, 8x)

0C4: Vibration (speed 6, hard, 16x)

0C5: Vibration (speed 6, pattern, 2x)

0C6: Vibration (speed 6, pattern, 4x)

0C7: Vibration (speed 6, pattern, 8x)

0C8: Vibration (speed 6, pattern, 16x)

0C9: Vibration (speed 7, hard, 2x)

0CA: Vibration (speed 7, hard, 4x)

0CB: Vibration (speed 7, hard, 8x)

0CC: Vibration (speed 7, hard, 16x)

0CD: Vibration (speed 7, pattern, 2x)

0CE: Vibration (speed 7, pattern, 4x)

10

0CF: Vibration (speed 7, pattern, 8x)

0D0: Vibration (speed 7, pattern, 16x)

0D1: Vibration (speed 8, hard, 2x)

0D2: Vibration (speed 8, hard, 4x)

0D3: Vibration (speed 8, hard, 8x)

0D4: Vibration (speed 8, hard, 16x)

0D5: Vibration (speed 8, pattern, 2x)

0D6: Vibration (speed 8, pattern, 4x)

0D7: Vibration (speed 8, pattern, 8x)

0D8: Vibration (speed 8, pattern, 16x)

0D9: Vibration (speed 9, hard, 2x)

0DA: Vibration (speed 9, hard, 4x)

0DB: Vibration (speed 9, hard, 8x)

0DC: Vibration (speed 9, hard, 16x)

0DD: Vibration (speed 9, pattern, 2x)

0DE: Vibration (speed 9, pattern, 4x)

0DF: Vibration (speed 9, pattern, 8x)

0E0: Vibration (speed 9, pattern, 16x)

0E1: Vibration (speed 10, hard, 2x)

0E2: Vibration (speed 10, hard, 4x)

0E3: Vibration (speed 10, hard, 8x)

0E4: Vibration (speed 10, hard, 16x)

0E5: Vibration (speed 10, pattern, 2x)

0E6: Vibration (speed 10, pattern, 4x)

0E7: Vibration (speed 10, pattern, 8x)

0E8: Vibration (speed 10, pattern, 16x)

0E9: Vibration (speed 11, hard, 2x)

0EA: Vibration (speed 11, hard, 4x)

0EB: Vibration (speed 11, hard, 8x)

0EC: Vibration (speed 11, hard, 16x)

0ED: Vibration (speed 11, pattern, 2x)

0EE: Vibration (speed 11, pattern, 4x)

0EF: Vibration (speed 11, pattern, 8x)

0F0: Vibration (speed 11, pattern, 16x)

0F1: Vibration (speed 12, hard, 2x)

0F2: Vibration (speed 12, hard, 4x)

0F3: Vibration (speed 12, hard, 8x)

0F4: Vibration (speed 12, hard, 16x)

0F5: Vibration (speed 12, pattern, 2x)

0F6: Vibration (speed 12, pattern, 4x)

0F7: Vibration (speed 12, pattern, 8x)

0F8: Vibration (speed 12, pattern, 16x)

0F9: Vibration (speed 13, hard, 2x)

0FA: Vibration (speed 13, hard, 4x)

0FB: Vibration (speed 13, hard, 8x)

0FC: Vibration (speed 13, hard, 16x)

0FD: Vibration (speed 13, pattern, 2x)

0FE: Vibration (speed 13, pattern, 4x)

0FF: Vibration (speed 13, pattern, 8x)

100: Vibration (speed 13, pattern, 16x)

101: Vibration (speed 14, hard, 2x)

102: Vibration (speed 14, hard, 4x)

103: Vibration (speed 14, hard, 8x)

104: Vibration (speed 14, hard, 16x)

105: Vibration (speed 14, pattern, 2x)

106: Vibration (speed 14, pattern, 4x)

107: Vibration (speed 14, pattern, 8x)

108: Vibration (speed 14, pattern, 16x)

109: Vibration (speed 15, hard, 2x)

10A: Vibration (speed 15, hard, 4x)

10B: Vibration (speed 15, hard, 8x)

10C: Vibration (speed 15, hard, 16x)

10D: Vibration (speed 15, pattern, 2x)

10E: Vibration (speed 15, pattern, 4x)

10F: Vibration (speed 15, pattern, 8x)

110: Vibration (speed 15, pattern, 16x)

111: Vibration (speed 16, hard, 2x)

112: Vibration (speed 16, hard, 4x)

113: Vibration (speed 16, hard, 8x)

114: Vibration (speed 16, hard, 16x)

115: Vibration (speed 16, pattern, 2x)

116: Vibration (speed 16, pattern, 4x)

117: Vibration (speed 16, pattern, 8x)

118: Vibration (speed 16, pattern, 16x)

119: Vibration (speed 17, hard, 2x)

11A: Vibration (speed 17, hard, 4x)

11B: Vibration (speed 17, hard, 8x)

11C: Vibration (speed 17, hard, 16x)

11D: Vibration (speed 17, pattern, 2x)

11E: Vibration (speed 17, pattern, 4x)

11F: Vibration (speed 17, pattern, 8x)

120: Vibration (speed 17, pattern, 16x)

121: Vibration (speed 18, hard, 2x)

122: Vibration (speed 18, hard, 4x)

123: Vibration (speed 18, hard, 8x)

124: Vibration (speed 18, hard, 16x)

125: Vibration (speed 18, pattern, 2x)

126: Vibration (speed 18, pattern, 4x)

127: Vibration (speed 18, pattern, 8x)

128: Vibration (speed 18, pattern, 16x)

129: Vibration (speed 19, hard, 2x)

12A: Vibration (speed 19, hard, 4x)

12B: Vibration (speed 19, hard, 8x)

12C: Vibration (speed 19, hard, 16x)

12D: Vibration (speed 19, pattern, 2x)

12E: Vibration (speed 19, pattern, 4x)

12F: Vibration (speed 19, pattern, 8x)

130: Vibration (speed 19, pattern, 16x)

131: Vibration (speed 20, hard, 2x)

132: Vibration (speed 20, hard, 4x)

133: Vibration (speed 20, hard, 8x)

134: Vibration (speed 20, hard, 16x)

135: Vibration (speed 20, pattern, 2x)

136: Vibration (speed 20, pattern, 4x)

137: Vibration (speed 20, pattern, 8x)

138: Vibration (speed 20, pattern, 16x)

139: Vibration (speed 21, hard, 2x)

13A: Vibration (speed 21, hard, 4x)

13B: Vibration (speed 21, hard, 8x)

13C: Vibration (speed 21, hard, 16x)

13D: Vibration (speed 21, pattern, 2x)

13E: Vibration (speed 21, pattern, 4x)

13F: Vibration (speed 21, pattern, 8x)

140: Vibration (speed 21, pattern, 16x)

141: Vibration (speed 22, hard, 2x)

142: Vibration (speed 22, hard, 4x)

143: Vibration (speed 22, hard, 8x)

144: Vibration (speed 22, hard, 16x)

145: Vibration (speed 22, pattern, 2x)

146: Vibration (speed 22, pattern, 4x)

147: Vibration (speed 22, pattern, 8x)

148: Vibration (speed 22, pattern, 16x)

149: Vibration (soft, very long)

14A: Pikachu 6

14B: Pikachu 7

14C: Pikachu 8

14D: Pikachu 9

14E: Pikachu 10

14F: Pikachu 11

150: Pikachu 12

151: Light/Vibration (red, pattern 1)

152: Light/Vibration (red, pattern 2)

153: Light/Vibration (red, pattern 3)

154: Light/Vibration (red, pattern 4)

155: Light/Vibration (red, pattern 5)

156: Light/Vibration (red, pattern 6)

157: Light/Vibration (red, pattern 7)

158: Light/Vibration (red, pattern 8)

159: Light/Vibration (red, pattern 9)

15A: Light/Vibration (red, pattern 10)

15B: Light/Vibration (red, pattern 11)

15C: Light/Vibration (red, pattern 12)

15D: Light/Vibration (red, pattern 13)

15E: Light/Vibration (red, pattern 14)

15F: Light/Vibration (red, pattern 15)

160: Light/Vibration (red, pattern 16)

161: Light/Vibration (red, pattern 17)

162: Pikachu 13

163: Light (pale magenta)

164: Vibration (pattern 15)

165: Light/Vibration (pattern)

166: Light (pale yellow/green)

167: Light (pale blue/purple)

168: Light (magenta)

169: Light (yellow/green)

16A: Light (cyan)

16B: Light (pale blue)

16C: Light (very pale blue)

16D: Light (pale magenta)

16E: Light (pale yellow)

16F: Light/Vibration (blue, pattern 1)

170: Light/Vibration (blue, pattern 2)

171: Light/Vibration (blue, pattern 3)

172: Light/Vibration (blue, pattern 4)

173: Light/Vibration (blue, pattern 5)

174: Light/Vibration (blue, pattern 6)

175: Light/Vibration (blue, pattern 7)

176: Light/Vibration (blue, pattern 8)

177: Light/Vibration (blue, pattern 9)

178: Light/Vibration (blue, pattern 10)

179: Light/Vibration (blue, pattern 11)

17A: Light/Vibration (blue, pattern 12)

17B: Light/Vibration (blue, pattern 13)

17C: Light/Vibration (blue, pattern 14)

17D: Light/Vibration (blue, pattern 15)

17E: Light/Vibration (blue, pattern 16)

17F: Light/Vibration (blue, pattern 17)

180: Light/Vibration (blue, pattern 18)

181: Light/Vibration (green, pattern 1)

182: Light/Vibration (green, pattern 2)

183: Light/Vibration (green, pattern 3)

184: Light/Vibration (green, pattern 4)

185: Light/Vibration (green, pattern 5)

186: Light/Vibration (green, pattern 6)

187: Light/Vibration (green, pattern 7)

188: Light/Vibration (green, pattern 8)

189: Light/Vibration (green, pattern 9)

18A: Light/Vibration (green, pattern 10)

18B: Light/Vibration (green, pattern 11)

18C: Light/Vibration (green, pattern 12)

18D: Light/Vibration (green, pattern 13)

18E: Light/Vibration (green, pattern 14)

18F: Light/Vibration (green, pattern 15)

190: Light/Vibration (green, pattern 16)

191: Light/Vibration (green, pattern 17)

192: Light/Vibration (green, pattern 18)

193: Light/Vibration (yellow/green, pattern 1)

194: Light/Vibration (yellow/green, pattern 2)

195: Light/Vibration (yellow/green, pattern 3)

196: Light/Vibration (yellow/green, pattern 4)

197: Light/Vibration (yellow/green, pattern 5)

198: Light/Vibration (yellow/green, pattern 6)

199: Light/Vibration (yellow/green, pattern 7)

19A: Light/Vibration (yellow/green, pattern 8)

19B: Light/Vibration (yellow/green, pattern 9)

19C: Light/Vibration (yellow/green, pattern 10)

19D: Light/Vibration (yellow/green, pattern 11)

19E: Light/Vibration (yellow/green, pattern 12)

19F: Light/Vibration (yellow/green, pattern 13)

1A0: Light/Vibration (yellow/green, pattern 14)

1A1: Light/Vibration (yellow/green, pattern 15)

1A2: Light/Vibration (yellow/green, pattern 16)

1A3: Light/Vibration (yellow/green, pattern 17)

1A4: Light/Vibration (yellow/green, pattern 18)

1A5: Light/Vibration (purple, pattern 1)

1A6: Light/Vibration (purple, pattern 2)

1A7: Light/Vibration (purple, pattern 3)

1A8: Light/Vibration (purple, pattern 4)

1A9: Light/Vibration (purple, pattern 5)

1AA: Light/Vibration (purple, pattern 6)

1AB: Light/Vibration (purple, pattern 7)

1AC: Light/Vibration (purple, pattern 8)

1AD: Light/Vibration (purple, pattern 9)

1AE: Light/Vibration (purple, pattern 10)

1AF: Light/Vibration (purple, pattern 11)

1B0: Light/Vibration (purple, pattern 12)

1B1: Light/Vibration (purple, pattern 13)

1B2: Light/Vibration (purple, pattern 14)

1B3: Light/Vibration (purple, pattern 15)

1B4: Light/Vibration (purple, pattern 16)

1B5: Light/Vibration (purple, pattern 17)

1B6: Light/Vibration (purple, pattern 18)

1B7: Light/Vibration (yellow, pattern 1)

1B8: Light/Vibration (yellow, pattern 2)

1B9: Light/Vibration (yellow, pattern 3)

1BA: Light/Vibration (yellow, pattern 4)

1BB: Light/Vibration (yellow, pattern 5)

1BC: Light/Vibration (yellow, pattern 6)

1BD: Light/Vibration (yellow, pattern 7)

1BE: Light/Vibration (yellow, pattern 8)

1BF: Light/Vibration (yellow, pattern 9)

1C0: Light/Vibration (yellow, pattern 10)

1C1: Light/Vibration (yellow, pattern 11)

1C2: Light/Vibration (yellow, pattern 12)

1C3: Light/Vibration (yellow, pattern 13)

1C4: Light/Vibration (yellow, pattern 14)

1C5: Light/Vibration (yellow, pattern 15)

1C6: Light/Vibration (yellow, pattern 16)

1C7: Light/Vibration (yellow, pattern 17)

1C8: Light/Vibration (yellow, pattern 18)

1C9: Light/Vibration (white, pattern 1)

1CA: Light/Vibration (white, pattern 2)

1CB: Light/Vibration (white, pattern 3)

1CC: Light/Vibration (white, pattern 4)

1CD: Light/Vibration (white, pattern 5)

1CE: Light/Vibration (white, pattern 6)

1CF: Light/Vibration (white, pattern 7)

1D0: Light/Vibration (white, pattern 8)

1D1: Light/Vibration (white, pattern 9)

1D2: Light/Vibration (white, pattern 10)

1D3: Light/Vibration (white, pattern 11)

1D4: Light/Vibration (white, pattern 12)

1D5: Light/Vibration (white, pattern 13)

1D6: Light/Vibration (white, pattern 14)

1D7: Light/Vibration (white, pattern 15)

1D8: Light/Vibration (white, pattern 16)

1D9: Light/Vibration (white, pattern 17)

1DA: Light/Vibration (white, pattern 18)

1DB: Light/Vibration (red, medium)

1DC: Light/Vibration (yellow/green, medium)

1DD: Light/Vibration (green, medium)

1DE: Light/Vibration (blue, very short)

1DF: Light/Vibration (blue, short)

1E0: Light/Vibration (blue, medium)

1E1: Light/Vibration (green, very short)

1E2: Light/Vibration (green, short)

1E3: Light/Vibration (green, medium)

1E4: Light/Vibration (yellow/green, very short)

1E5: Light/Vibration (yellow/green, short)

1E6: Light/Vibration (yellow/green, medium)

1E7: Light/Vibration (purple, very short)

1E8: Light/Vibration (purple, short)

1E9: Light/Vibration (purple, medium)

1EA: Light/Vibration (yellow, very short)

1EB: Light/Vibration (yellow, short)

1EC: Light/Vibration (yellow, medium)

1ED: Light/Vibration (white, very short)

1EE: Light/Vibration (white, short)

1EF: Light/Vibration (white, medium)

1F0: Light/Vibration (red, pattern 18)

1F1: Light (red, indefinite)

1F2: Light (yellow, indefinite)

1F3: Light (green, indefinite)

1F4: Light (blue, indefinite)

1F5: Light (purple, indefinite)

1F6: Light (pattern, indefinite)

1F7: SFX/Light (sparkle, gray)

1F8: (turn off light)

1F9: Light/Vibration (blue, medium)

1FA: Light/Vibration (pale purple, medium)

1FB: Light/Vibration (pattern, medium)

1FC: (no response)

1FD: (no response)

1FE: (no response)

1FF: (no response)

11

14:03 Concerning Desert Studies, Cyberwar, and the Desert Power

by Naib Manul Laphroaig7

Gather round, neighbors, as we close the mois-
ture seals and relax the water discipline. Take off
your face masks and breathe the sietch air freely. It
is time for a story of the things that were and the
things that will come.

Knowledge and water. These are the things that
rule the universe. They are alike—and one truly
needs to lack them to appreciate their worth. Those
who have them in abundance proclaim their value—
and waste them thoughtlessly, without a care. They
make sure their wealth and their education degrees
are on display for the world, and ever so hard to
miss; they waste both time and water to put us in
our place. Yet were they to see just one of our hid-
den caches, they would realize how silly their dis-
plays are in comparison.

For while they pour out the water and the time
of their lives, and treat us as savages and dismiss us,
we are working to change the face of the world.

Their scientists have imperial ranks, and their
city schools teach—before and above any useful
subject—respect for these ranks and for those who
pose as “scientists” on the imperial TV. And yet,
guess who knows more physics, biology, and plane-
tary ecology that matters. Guess who knows how
their systems actually work, from the smallest wa-
ter valve in a stillsuit to the ecosystems of an entire
planet. They mock Shai-hulud and dismiss us Fre-
men as the unwashed rabble tinkering to survive in
the desert—yet their degrees don’t impress the sand.

The works of the ignorant are like sand. When
yet sparse, they merely vex and irritate like loose
grains; when abundant, they become like dunes that
overwhelm all water, life, and knowledge. Verily,
these are the dunes where knowledge goes to die.
As the ignorant labor, sand multiplies, until it cov-
ers the face of the world and pervades every breath
of the wind.

And then there was a Dr. Kynes. To imperial
paymasters, he was just another official on the long
roll getting ever longer. To the people of the city he
was just another bureaucrat to avoid if they could,
or to bribe if they couldn’t. To his fellow civil
servants—who considered themselves scholars, yet
spent more time over paperwork than most clerks—
he was an odd case carrying on about things that
mattered nothing to one’s career, as absolutely ev-
erybody knew; in short, they only listened to him if
they felt charitable at the moment.

For all these alleged experts, the order of life
was already scientifically organized about the best
it could be. One would succeed by improving the
standard model of a stillsuit, or just as well by sell-
ing a lot of crappy ones.

One did not succeed by talking about chang-
ing a planet. Planets were already as organized as
they could be. A paper could be written, of course,
but, to be published, the paper had to have both
neatly tabulated results and a summary of prior
work. There was no prior published work on chang-
ing planets, no journals devoted to it, and no out-
standing funding solicitations. One would not even
get invited to lecture about it. It was a waste of

7Naib Laphroiag, an early follower of Muad’dib, is sometimes incorrectly said to have composed the Litany against Cyber
(“I shall not cyber. Cyber is the mind-killer that brings bullshit. I will face cyber and let it pass over me. When the bullshit
has gone, only PoC of how nifty things really work will remain.”) It had, in fact, originated with early Butlerians, but the
Naib carried it to neighbors far and wide over the sand wherever it needed to be heard.

12

time, useless for advancement in rank.
Besides, highly ranked minds must have already

thought about it, and did not take it up; clearly, the
problem was intractable. Indeed, weren’t there al-
ready dissertations on the hundred different aspects
of sand, and of desert plants, and of the native ani-
mals and birds? There were even some on the silly
native myths. Getting on the bad side of the water-
sellers, considering how much they were donating
to the cause of higher learning, was also not a wise
move.

But Kynes knew a secret: knowledge was wa-
ter, and water was knowledge. The point of knowl-
edge was to provide what was needed the most, not
ranks or lectures. And he knew another secret: one
could, in fact, figure out a thing that many superior
minds hadn’t bothered with, be it even the size of
the planet. And he may have guessed a third se-
cret: if someone didn’t value water as life, there was
no point of talking to them about water, or about
knowledge. They would, at best, nod, and then go
about their business. It is like spilling water on the
sand.

That did not leave Kynes with a lot of options.
In fact, it left him with none at all. And so he did a
thing that no one else had done before: he left the
city and walked out onto the sand. He went to find
us, and he became Liet.

For those who live on the sand and are sur-
rounded by it understand the true value of water,
and of figuring things out, be they small or large.
This Kynes sought, and this he found—with us, the
Fremen.

His manner was odd to us, but he knew things of
the sand that no city folk cared to know; he spoke
of water in the sand as we heard none speak before.

He must have figured it out—and there were just
enough of us who knew that figuring things out was
water and life. And so he became Liet.

His knowledge, rejected by bureaucrats, already
turned into a water wealth no bureaucrat can yet
conceive of. His peers wrote hundreds of thousands
of papers since he left, and went on to higher ranks—
and all of these will be blown away by the desert
winds. A lot of useless technology will be sold and
ground into dust on the sand—while Liet’s words are
changing the desert slowly but surely.

Something strange has been going of late in their
sheltered cities. There is talk of a “sand-war,” and
of “sand warriors,” and of “sand power.” They are
giving sand new names, and new certifications of
“desert moisture security professionals” to their city
plumbers. Their schools are now supposed to teach
something they called SANDS, “Science, Agronomy,
Nomenclature,8 Desert Studies,” to deliver a “sand
superiority.” Their imperial news spread rumors
of “anonymous senior imperial officials” unleashing
“sand operations,” the houses major building up
their “sand forces” and the houses minor demand-
ing an investigation in the Landsraat.

Little do they know where the true sand power
lies, and where the actual water and knowledge are
being accumulated to transform the desert.

The sand will laugh at them—and one day the
one who understands the true source of power will
come after Liet, the stored water will come forth,
the ecology will change—and a rain will fall.

Until then, we will keep the water and the knowl-
edge. Until then, we, the Fremen, will train the new
generations of those who know and those who figure
things out!

8Truly, they believe that teaching and learning is repetition of words, and that their things break on the sand because they
are named wrong. Change the words, and everything will work on the sand! Hear the sandstorm roaring with laughter above
the dunes, and the great Shai-hulud writhing with it below!

13

14:04 Flush+Reload

by Taylor Hornby

Dear Editors and Readers of PoC‖GTFO,

You’ve been lied to about how your computer
works. You see, in a programming class they teach
you just enough for you to get on with your job and
no more. What you learn is a mere abstraction of the
very complicated piece of physics sitting under your
desk. To use your computer to its fullest potential,
you must forget the familiar abstraction and finally
see your computer for what it really is. Come with
me, as we take a small step towards enlightenment.

You know what makes a computer—or so you
think. There is a processor. There is a bank of main
memory, which the processor reads, writes, and ex-
ecutes from. And there are processes, those entities
that from time to time get loaded into the processor
to do their work.

As we know, processes shouldn’t be trusted to
play well together, and need to be kept separate.
Many of the processor’s features were added to keep
those processes isolated. It would be quite bad if
one process could talk to another without the sys-
tem administrator’s permission.

We also know that the faster a computer is, the
more work it can do and the more useful it is. Even
more features were introduced to the processor in
order to make it go as fast as possible.

Accordingly, your processor most likely has a
memory cache sitting between main memory and
the processor, remembering recently-read data and
code, so that the next time the processor reads from
the same address, it doesn’t have to reach all the
way out to main memory. The vendors will say this
feature was added to make the processor go faster,
and it does do a great job of that. But I will show
you that the cache is also a feature to help hack-
ers get around those annoying access controls that
system administrators seem to love.

What I’m going to do is show you how to send
a text message from one process to the other, using
only memory reads. What!? How could this be pos-
sible? According to your programming class, you
say, reads from memory are just reads, they can’t
be used to send messages!

The gist is this: the cache remembers recently
executed code, which means that it must also re-
member which code was recently executed. Pro-
cesses are in control of the code they execute, so
what we can do is execute a special pattern of code
that the cache will remember. When the second
process gets a chance to run, it will read the pattern
out of the cache and recover the message. Oh how
thoughtful it was of the processor designers to add
this feature!

The undocumented feature we’ll be using is
called “Flush+Reload,” and it was originally discov-
ered by Yuval Yarom and Katrina Falkner.9 It’s
available in most modern Intel processors, so if
you’ve got one of those, you should be able to follow
along.

9Usenix Security 2014

14

15

It works like this. When Sally the Sender pro-
cess gets loaded into memory, one copy of all her ex-
ecuted code gets loaded into main memory. When
Robert the Receiver process loads Sally’s binary into
his address space, the operating system isn’t going
to load a second copy: that would be wasteful. In-
stead, it’s just going to point Robert’s page tables
at Sally’s memory. If Sally and Robert could both
write to the memory, it would be a huge problem
since they could simply talk by writing messages to
each other in the shared memory. But that isn’t a
problem, because one of those processor security fea-
tures stops both Sally and Robert from being able
to write to the memory. How do they communicate
then?

When Sally the Sender executes some of her
code, the cache—the last-level cache, to be specific—
is going to remember her most recently executed
code. When Robert the Receiver reads a chunk of
code in Sally’s binary, the read operation is going to
be sent through the very same cache. So: if Sally
ran the code not too long ago, Robert’s read will
happen very fast. If Sally hasn’t run the code in a
while, Robert’s read is going to be slow.

Sally and Robert are going to agree ahead of time
on 27 locations in Sally’s binary. That’s one location
for each letter of the alphabet, and one left over for
the space character. To send a message to Robert,
Sally is going to spell out the message by executing
the code at the location for the letter she wants to
send. Robert is going to continually read from all 27
locations in a loop, and when one of them happens
faster than usual, he’ll know that’s a letter Sally just
sent.

Figure 1 contains the source code for Sally’s bi-
nary. Notice that it doesn’t even explicitly make
any system calls.

This program takes a message to send on the
command-line and simply passes the processor’s
thread of execution over the probe site correspond-
ing to that character. To have Sally send the
message “THE QUICK BROWN FOX JUMPS OVER THE

LAZY DOG” we just compile it without optimizations,
then run it.

But how does Robert receive the message?
Robert runs the program whose source code is at
flush-reload/myversion. The key to that pro-
gram is this bit of code, which times how long it
takes to read from an address, and then flushes it
from the cache.

1 __attribute__ ((a lways_in l ine))
i n l i n e unsigned long probe (char ∗ adrs) {

3 volat i le unsigned long time ;

5 asm __volatile__ (
" mfence \n"

7 " l f e n c e \n"
" rd t s c \n"

9 " l f e n c e \n"
" movl %%eax , %%e s i \n"

11 " movl (%1) , %%eax \n"
" l f e n c e \n"

13 " rd t s c \n"
" sub l %%es i , %%eax \n"

15 " c l f l u s h 0(%1) \n"
: "=a" (time)

17 : "c" (adrs)
: "%e s i " , "%edx") ;

19 return time ;
}

By repeatedly running this code on those special
probe sites in Sally’s binary, Robert will see which
letters Sally is sending. Robert just needs to know
where those probe sites are. It’s a matter of filter-
ing the output of objdump to find those addresses,
which can be done with this handy script:

#!/ bin /bash
2 for l e t t e r in {A . . Z}

do

4 addr=$ (objdump −D −M i n t e l msg | \
sed −n −e "/<$ l e t t e r >/,\$p" | \

6 grep c a l l | head −n 1 | \
cut −d ’ : ’ −f 1 | t r −d ’ ’) ;

8 echo −n "−p $ l e t t e r : 0 x$addr "
done

10 addr=$ (objdump −D −M i n t e l msg | \
sed −n −e "/<SP>/,\$p" | \

12 grep c a l l | head −n 1 | \
cut −d ’ : ’ −f 1 | t r −d ’ ’) ;

14 echo "−p _:0 x$addr"

Assuming this script works, it will output a list of
command-line arguments for the receiver, enumerat-
ing which addresses to watch for getting entered into
the cache:

−p A:0 x407cc5 −p B:0 x416cd5 −p C:0 x425ce5
2 −p D:0 x434cf5 −p E:0 x443d05 −p F:0 x452d15

−p G:0 x461d25 −p H:0 x470d35 −p I : 0 x47fd45
4 −p J : 0 x48ed55 −p K:0 x49dd65 −p L: 0 x4acd75

−p M:0 x4bbd85 −p N:0 x4cad95 −p O:0 x4d9da5
6 −p P:0 x4e8db5 −p Q:0 x4f7dc5 −p R:0 x506dd5

−p S : 0 x515de5 −p T:0 x524df5 −p U:0 x533e05
8 −p V:0 x542e15 −p W:0 x551e25 −p X:0 x560e35

−p Y:0 x56fe45 −p Z : 0 x57ee55 −p _:0 x58de65

16

1 /∗ msg . c − Send a message through the Flush+Reload cache side−channel .
∗ Written Taylor Hornby for PoC | |GTFO 0x14 .

3 ∗/

5 // We surround the probe s i t e s with padding . This makes sure they ’ re in
// d i f f e r e n t page frames which reduces noise from pre fe tch ing , e tc .

7 unsigned int padding = 0 ;
#define PADDING_A padding += 1 ;

9 #define PADDING_B PADDING_A PADDING_A
#define PADDING_C PADDING_B PADDING_B

11 #define PADDING_D PADDING_C PADDING_C
#define PADDING_E PADDING_D PADDING_D

13 #define PADDING_F PADDING_E PADDING_E
#define PADDING_G PADDING_F PADDING_F

15 #define PADDING_H PADDING_G PADDING_G
#define PADDING_I PADDING_H PADDING_H

17 #define PADDING_J PADDING_I PADDING_I
#define PADDING_K PADDING_J PADDING_J

19 #define PADDING PADDING_K PADDING_K

21 // The probe s i t e s w i l l be c a l l i n s t r u c t i on s to t h i s empty funct ion . I t
// doesn ’ t have to be a c a l l i n s t r u c t i on ; i t ’ s j u s t easy to grep for .

23 void nu l l () { }
#define PROBE nu l l () ;

25
// One probe s i t e for each l e t t e r o f the a lphabe t and space .

27 void A() { PADDING PROBE PADDING } void B() { PADDING PROBE PADDING }
void C() { PADDING PROBE PADDING } void D() { PADDING PROBE PADDING }

29 void E() { PADDING PROBE PADDING } void F() { PADDING PROBE PADDING }
void G() { PADDING PROBE PADDING } void H() { PADDING PROBE PADDING }

31 void I () { PADDING PROBE PADDING } void J () { PADDING PROBE PADDING }
void K() { PADDING PROBE PADDING } void L() { PADDING PROBE PADDING }

33 void M() { PADDING PROBE PADDING } void N() { PADDING PROBE PADDING }
void O() { PADDING PROBE PADDING } void P() { PADDING PROBE PADDING }

35 void Q() { PADDING PROBE PADDING } void R() { PADDING PROBE PADDING }
void S () { PADDING PROBE PADDING } void T() { PADDING PROBE PADDING }

37 void U() { PADDING PROBE PADDING } void V() { PADDING PROBE PADDING }
void W() { PADDING PROBE PADDING } void X() { PADDING PROBE PADDING }

39 void Y() { PADDING PROBE PADDING } void Z() { PADDING PROBE PADDING }
void SP() { PADDING PROBE PADDING }

41
int main (int argc , char ∗∗argv) {

43 char ∗p ;
char l owercase ;

45
i f (argc != 2)

47 return 1 ;

49 for (p = argv [1] ; ∗p != 0 ; ++p) {
// Execute the probe corresponding to the l e t t e r to send .

51 lowercase = ∗p | 32 ;
switch (lowercase) {

53 case ’ a ’ : A() ; break ; case ’b ’ : B() ; break ;
case ’ c ’ : C() ; break ; case ’d ’ : D() ; break ;

55 case ’ e ’ : E() ; break ; case ’ f ’ : F() ; break ;
case ’ g ’ : G() ; break ; case ’h ’ : H() ; break ;

57 case ’ i ’ : I () ; break ; case ’ j ’ : J () ; break ;
case ’ k ’ : K() ; break ; case ’ l ’ : L () ; break ;

59 case ’m’ : M() ; break ; case ’n ’ : N() ; break ;
case ’ o ’ : O() ; break ; case ’p ’ : P() ; break ;

61 case ’ q ’ : Q() ; break ; case ’ r ’ : R() ; break ;
case ’ s ’ : S () ; break ; case ’ t ’ : T() ; break ;

63 case ’u ’ : U() ; break ; case ’ v ’ : V() ; break ;
case ’w ’ : W() ; break ; case ’ x ’ : X() ; break ;

65 case ’ y ’ : Y() ; break ; case ’ z ’ : Z () ; break ;
case ’ ’ : SP() ; break ;

67 }
}

69
return 0 ;

71 }

Figure 1. Sally’s Executable

17

The letter before the colon is the name of the
probe site, followed by the address to watch after
the colon. With those addresses, Robert can run
the tool and receive Sally’s messages.

1 $. / spy −e . /msg −t 120 −s 20000 \
−p A:0 x407cc5 −p B:0 x416cd5 −p C:0 x425ce5 \

3 −p D:0 x434cf5 −p E:0 x443d05 −p F:0 x452d15 \
−p G:0 x461d25 −p H:0 x470d35 −p I : 0 x47fd45 \

5 −p J : 0 x48ed55 −p K:0 x49dd65 −p L: 0 x4acd75 \
−p M:0 x4bbd85 −p N:0 x4cad95 −p O:0 x4d9da5 \

7 −p P:0 x4e8db5 −p Q:0 x4f7dc5 −p R:0 x506dd5 \
−p S : 0 x515de5 −p T:0 x524df5 −p U:0 x533e05 \

9 −p V:0 x542e15 −p W:0 x551e25 −p X:0 x560e35 \
−p Y:0 x56fe45 −p Z : 0 x57ee55 −p _:0 x58de65

The -e option is the path to Sally’s binary,
which must be exactly the same path as Sally ex-
ecutes. The -t parameter is the threshold that de-
cides what’s a fast access or not. If the memory read
is faster than that many clock cycles, it will be con-
sidered fast, which is to say that it’s in the cache.
The -s option is how often in clock cycles to check
all of the probes.

With Robert now listening for Sally’s messages,
Sally can run this command in another terminal as
another user to transmit her message.

$. /msg "The quick brown fox jumps over the
lazy dog"

1 WARNING: This p ro c e s s o r does not have an
inva r i an t TSC.

Detected ELF type : Executable .
3 T|H|E|_|Q|U| I |C|K|_|_|B|B|R|O|W|N|_|F |O|X|_|

J |U|M|P| S |_|O|V|E|R|_|T|H|E|_|L |A|Z |Y|_|
D|O|G|

There’s a bit of noise in the signal (note the repli-
cated B’s), but it works! Don’t take my word for it,
try it for yourself! It’s an eerie feeling to see one
process send a message to another even though all
they’re doing is reading from memory.

Now you see what the cache really is. Not only
does it make your computer go faster, it also has this
handy feature that lets you send messages between
processes without having to go through a system
call. You’re one step closer to enlightenment.

– — — – — — — — – — –
This is just the beginning. You’ll find a collec-

tion of tools and experiments that go much further
than this.10 The attacks there use Flush+Reload to
find out which PDF file you’ve opened, which web
pages you’re visiting, and more.

I leave two open challenges to you fine readers:
1. Make the message-sending tool reliable, so

that it doesn’t mangle messages even a little bit.
Even cooler would be to make it a two-way reliable
chat.

2. Extend the PDF-distinguishing attack in my
poppler experiment11 to determine which page of
pocorgtfo14.pdf is being viewed. As I’m reading
this issue of PoC‖GTFO, I want you to be able to
tell which page I’m looking at through the side chan-
nel.

Best of luck!
—Taylor Hornby

10git clone https://github.com/defuse/flush-reload-attacks
11experiments/poppler

18

14:05 Anti-Keylogging with Random Noise

by Mike Myers

In PoC‖GTFO 12:7, we learned that malware is
inherently “drunk,” and we can exploit its inebria-
tion. This time, our entonnoir de gavage will be
filled with random keystrokes instead of single malt.

Gather ’round, neighbors, as we learn about the
mechanisms behind the various Windows user-mode
keylogging techniques employed by malware, and
then investigate a technique for thwarting them all.

Background

Let’s start with a primer on the data flow path of
keyboard input in Windows.

Figure 2 is a somewhat simplified diagram of the
path of a keystroke from the keyboard peripheral de-
vice (top left), into the Windows operating system
(left), and then into the active application (right).
In more detail, the sequence of steps is as follows:

1. The user presses down on a key.

2. The keyboard’s internal microcontroller con-
verts key-down activity to a device-specific “s-
can code,” and issues it to keyboard’s internal
USB device controller.

3. The keyboard’s internal USB device controller
communicates the scan-code as a USB message
to the USB host controller on the host system.
The scan code is held in a circular buffer in the
kernel.

4. The keyboard driver(s) converts the scan code
into a virtual key code. The virtual key code

is applied as a change to a real-time system-
wide data struct called the Async Key State
Array.

5. Windows OS process Csrcc.exe reads the in-
put as a virtual key code, wraps it in a Win-
dows “message,” and delivers it to the message
queue of the UI thread of the user-mode ap-
plication that has keyboard focus, along with
a time-of-message update to a per-thread data
struct called the Sync Key State Array.

6. The user application’s “message pump” is a
small loop that runs in its UI thread, retriev-
ing Windows messages with GetMessage(),
translating the virtual key codes into usable
characters with TranslateMessage(), and fi-
nally sending the input to the appropriate
callback function for a particular UI element
(also known as the “Window proc”) that actu-
ally does something with the input (displays a
character, moves the caret, etc.).

For more detail, official documentation of Windows
messages and Windows keyboard input can be found
in MSDN MS632586 and MS645530.

User-Mode Keylogging Techniques in
Malware

Malware that wants to intercept keyboard input
can attempt to do so at any point along this path.
However, for practical reasons input is usually in-
tercepted using hooks within an application, rather
than in the operating system kernel. The reasons
include: hooking in the kernel requires Adminis-
trator privilege (including, today, a way to meet
or circumvent the driver code-signing requirement);
hooking in the kernel before the keystroke reaches
the keyboard driver only obtains a keyboard device-
dependent “scan code” version of the keystroke,
rather than its actual character or key value; hook-
ing in the kernel after the keyboard driver but be-
fore the application obtains only a “virtual key code”
version of the keystroke (contextual with regard to
the keyboard “layout” or language of the OS); and
finally, hooking in the kernel means that the mal-
ware doesn’t know which application is receiving the

19

Keyboard Device

USB Host Controller Driver

kbdclass.sys

csrcc.exe

User-Mode Process

User32.dll

Worker
Thread

Worker
Thread

UI
Thread

Async Key
State Array

Hardware
Input Queue

Thread
Msg. Queue

Sync Key
State Array Window Proc

GetMessage

TranslateMessage

DispatchMessage

USB

Callback

Returns from ZwReadFile

Creates messages, sends to threads

with snapshots of key state

Figure 2. Data flow of keyboard input in Windows.

keyboard input, because the OS has not yet dis-
patched the keystrokes to the active/focused appli-
cation. This is why, practically speaking, malware
only has a handful of locations where it can inter-
cept keyboard input: upon entering or leaving the
system message queue, or upon entering or leaving
the thread message queue.

Now that we know the hooking will likely be in
user-mode, we can learn about the methods to do
user-mode keystroke logging, which include:

• Hooking the Windows message functions
TranslateMessage(), GetMessage(), and
PeekMessage() to capture a copy of messages
as they are retrieved from the per-thread mes-
sage queue.

• Creating a Windows message hook
for the WH_KEYBOARD message using
SetWindowsHookEx().

• Similarly, creating a Windows mes-
sage hook for the so-called “LowLevel
Hook” (WH_KEYBOARD_LL) message with
SetWindowsHookEx().

• Similarly, creating a Windows message hook
for WH_JOURNALRECORD, in order to create a

Journal Record Hook. Note: this method has
been disabled since Windows Vista.

• Polling the system with GetAsyncKeyState().

• Similarly, polling the system with GetKey-

boardState() or GetKeyState().

• Similarly, polling the system with GetRawIn-

putData().

• Using DirectX to capture keyboard input
(somewhat lower-level method).

• Stealing clipboard contents using, e.g., Get-

ClipboardData().

• Stealing screenshots or enabling a remote
desktop view (multiple methods).

20

The following table lists some pieces of malware
and which method they use.

Malware Keylogging Technique

Zeus Hooks TranslateMessage(),
GetMessage(), PeekMessage(),
and GetClipboardData(); uses
GetKeyboardState().12

Sality GetMessage(), GetKeyState(),
PeekMessage(),
TranslateMessage(),
GetClipboardData().

SpyEye Hooks TranslateMessage(),
then uses GetKeyboardState().

Poison Ivy Polls GetKeyboardLayout(),
GetAsyncKeyState(),
GetClipboardData(), and uses
SetWindowsHookEx().

Gh0st RAT Uses SetWindowsHookEx() with
WH_GETMESSAGE, which is another
way to hook GetMessage().

Anti-Keylogging with Keystroke Noise

One approach to thwarting keyloggers that might
seem to have potential is: Insert so many phantom
keyboard devices into the system that the malware
cannot reliably select the actual keyboard device for
keylogging. However, based upon our new under-
standing of how common malware implements key-
logging, it is clear that this approach will not be
successful, because malware does not capture key-
board input by reading it directly from the device.
Malware is designed to intercept the input at a layer
high enough as to be input device agnostic. We need
a different technique.

Our idea is to generate random keyboard activity
“noise” emanating at a low layer and removed again
in a high layer, so that it ends up polluting a mal-
ware’s keylogger log, but does not actually interfere
at the level of the user’s experience. Our approach,
shown in Figure 3, is illustrated as a modification to
the previous diagram.

Technical Approach

What we have done is create a piece of dynamically
loadable code (currently a DLL) which, once loaded,
checks for the presence of User32.dll and hooks its

imported DispatchMessage() API. From the Dis-
patchMessage hook, our code is able to filter out
keystrokes immediately before they would otherwise
be dispatched to a Window Proc. In other words,
keystroke noise can be filtered here, at a point after
potential malware would have already logged it. The
next step is to inject the keystroke noise: our code
runs in a separate thread and uses the SendInput()
API to send random keystroke input that it gener-
ates. These keystrokes are sent into the keyboard
IO path at a point before the hooks typically used
by keylogging malware.

In order avoid sending keystroke noise that
will be delivered to a different application and
therefore not filtered, our code must also use the
SetWindowsHookEx() API to hook the Window-
Proc, in order to catch the messages that indi-
cate our application is the one with keyboard focus.
WM_SETFOCUS and WM_KILLFOCUS messages indicate
gaining or losing keyboard input focus. We can’t
catch these messages in our DispatchMessage()

hook because, unlike keyboard, mouse, paint, and
timer messages, the focus messages are not posted to
the message queue. Instead they are sent directly to
WindowProc. By coordinating the focus gained/lost
events with the sending of keystroke noise, we pre-
vent the noise from “leaking” out to other applica-
tions.

Related Research

In researching our concept, we found some prior art
in the form of a European academic paper titled
NoisyKey.13 They did not release their implemen-
tation, though, and were much more focused on a
statistical analysis of the randomness of keys in the
generated noise than in the noise channel technique
itself. In fact, we encountered several technical ob-
stacles never mentioned in their paper. We also dis-
covered a commercial product called KeystrokeIn-
terference. The trial version of KeystrokeInterfer-
ence definitely defeated the keylogging methods we
tested it against, but it did not appear to actually
create dummy keystrokes. It seemed to simply cause
keyloggers to gather incomplete data—depending on
the method, they would either get nothing at all,
only the Enter key, only punctuation, or they would
get all of the keystroke events but only the letter “A”
for all of them. Thus, KeystrokeInterference doesn’t

12Zeus’s keylogging takes place only in the browser process, and only when Zeus detects a URL of interest. It is highly
contextual and configured by the attacker.

13NoisyKey: Tolerating Keyloggers via Keystrokes Hiding by Ortolani and Crispo, Usenix Hotsec 2012

21

Keyboard Device

USB Host Controller Driver

kbdclass.sys

csrcc.exe

User-Mode Process

User32.dll

Worker
Thread

Worker
Thread

Anti-
Keylogger

S
e
n
d
I
n
p
u
t

F
ilter

UI
Thread

Async Key
State Array

Hardware
Input Queue

Thread
Msg. Queue

Sync Key
State Array Window Proc

GetMessage

TranslateMessage

DispatchMessage

USB

Callback

Returns from ZwReadFile

Creates messages, sends to threads

with snapshots of key state

Figure 3. A noise generating anti-keylogger plugged into the Windows keyboard data flow.

obfuscate the typing dynamics, and it appears to
have a fundamentally different approach than we
took. (It is not documented anywhere what that
method actually is.)

Challenges

For keystroke noise to be effective as interference
against a keylogger, the generated noise should be
indistinguishable from user input. Three considera-
tions to make are the rate of the noise input, emulat-
ing the real user’s typing dynamics, and generating
the right mix of keystrokes in the noise.

Rate is fairly simple: the keystroke noise just has
to be generated at a high enough rate that it well
outnumbers the rate of keys actually typed by the
user. Assuming an expert typist who might type at
80 WPM, a rough estimate is that our noise should
be generated at a rate of at least several times that.
We estimated that about 400 keystrokes per minute,
or about six per second, should create a high enough
noise to signal ratio that it is effectively impossible
to discern which keys were typed. The goal here
is to make sure that random noise keys separate all
typed characters sufficiently that no strings of typed

characters would appear together in a log.

Addressing the issue of keystroke dynamics is
more complicated. Keystroke dynamics is a term
that refers to the ability to identify a user or what
they are typing based only on the rhythms of key-
board activity, without actually capturing the con-
tent of what they are typing. By flooding the in-
put with random noise, we should break keystroke
rhythm analysis of this kind, but only if the in-
jected keystrokes have a random rhythm about them
as well. If the injected keystrokes have their own
rhythm that can be distinguished, then an attacker
could theoretically learn to filter the noise out that
way. We address this issue by inserting a random
short delay before every injected keystroke. The
random delay interval has an upper bound but no
lower bound. The delay magnitude here is related
to the rate of input described previously, but the
randomness within a small range should mean that
it is difficult or impossible to distinguish real from
injected keystrokes based on intra-keystroke timing
analysis.

Another challenge was detecting when our appli-
cation had (keyboard) input focus. It is non-trivial
for a Windows application to determine when its

22

window area has been given input focus: although
there are polling-based Windows APIs that can pos-
sibly indicate which Window is in the foreground
(GetActiveWindow, GetForegroundWindow), they
are not efficient nor sufficient for our purposes.
The best solution we have at the moment is that
we installed a “Window Proc” hook to monitor for
WM_SETFOCUS and other such messages. We also
found it best to temporarily disable the keystroke
noise generation while the user was click-dragging
the window, because real keyboard input is not
simultaneously possible with dragging movements.
There are likely many other activation and focus
states that we have not yet considered, and which
will only be discovered through extensive testing.

Lastly, we had to address the need to gener-
ate keystroke noise that included all or most of
the keys that a user would actually strike, includ-
ing punctuation, some symbols, and capital letters.
This is where we encountered the difficulty with the
Shift key modifier. In order to create most non-
alphanumeric keystrokes (and to create any capital
letters, obviously), the Shift key needs to be held in
concert with another key. This means that in order
to generate such a character, we need to generate a
Shift key down event, then the other required key
down and up events, then a Shift key up event. The
problem lies in the fact that the system reacts to our
injected shift even if we filter it out: it will change
the capitalization of the user’s actual keystrokes.
Conversely, the user’s use of the Shift key will change
the capitalization of the injected keys, and our filter
routine will to fail recognize them as the ones we
recently injected, allowing them through instead.

The first solution we attempted was to track ev-
ery time the user hit the Shift key and every time
we injected a Shift keystroke, and deconflict their
states when doing our filter evaluation. Unfortu-
nately, this approach was prone to failure. Subtle
race conditions between Async Key State (“true” or
“system” key state, which is the basis of the Shift
key state’s affect on character capitalization) and
Sync Key State (“per-thread” key state, which is ef-
fectively what we tracked in our filter) were difficult
to debug. We also discovered that it is not possi-
ble to directly set and clear the Shift state of the
Async Key State table using an API like SetKey-

boardStateTable().

We considered using BlockInput() to ignore the
user’s keyboard input while we generated our own,
in order to resolve a Shift state confusion. How-
ever, in practice, this API can only be called from a
High Integrity Level process (as of Windows Vista),
making it impractical. It would probably also cause
noticeable problems with keyboard responsiveness.
It would not be acceptable as a solution.

Ultimately, the solution we found was to rely
on a documented feature of SendInput() that will
guarantee non-interleaving of inputs. Instead of call-
ing SendInput() four times (Shift down, key down,
key up, Shift up) with random delays in between, we
would instead create an array of all four key events
and call SendInput once. SendInput() then ensures
that there are no other user inputs that intermingle
with your injected inputs, when performed this way.
Additionally, we use GetAsyncKeyState() immedi-
ately before SendInput in order to track the actual
Shift state; if Shift were being held down by the
user, we would not also inject an interfering Shift
key down/up sequence. Together, these precautions

23

solved the issue with conflicting Shift states. How-
ever, this has the downside of taking away our ability
to model a user’s key-down-to-up rhythms using the
random delays between those events as we originally
intended.

Once we had made the change to our use of
SendInput(), we noticed that these injected noise
keys were no longer being picked up by certain meth-
ods of keylogging! Either they would completely not
see the keystroke noise when injected this way, or
they saw some of the noise, but not enough for it
to be effective anymore. What we determined was
happening is that certain keylogging methods are
based on polling for keyboard state changes, and
if activity (both a key down and its corresponding
key up) happens in between two subsequent polls, it
will be missed by the keylogger. When using Send-
Input to instantaneously send a shifted key, all four
key events (Shift key down, key down, key up, Shift
key up) pass through the keyboard IO path in less
time than a keylogger using a polling method can
detect (at practical polling rates) even though it is
fast enough to pick up input typed by a human.
Clearly this will not work for our approach. Unfor-
tunately, there is no support for managing the rate
or delay used by SendInput; if you want a key to
be “held” for a given amount of time, you have to
call SendInput twice with a wait in between. This
returns us to the problem of user input being inter-
leaved with our use of the Shift key.

Figure 4. CPU and RAM usage of the PoC
keystroke noise generator.

Our compromise solution was to put back our
multiple SendInput() calls separated by delays, but
only for keys that didn’t need Shift. For keys that
need Shift to be held, we use the single SendInput()
call method that doesn’t interleave the input with
user input, but which also usually misses being
picked up by polling-based keyloggers. To account
for the fact that polling-based keyloggers would re-
ceive mostly only the slower unshifted key noise that
we generate, we increased the noise amount propor-
tionately. This hybrid approach also enables us to
somewhat model keystroke dynamics, at least for
the unshifted keystrokes whose timing we can con-
trol.

PoC Results

Our keystroke noise implementation produces suc-
cessful results as tested against multiple user-mode
keylogging methods.

Input-stealing methods that do not involve key-
logging (such as screenshots and remote desktop) are
not addressed by our approach. Fortunately, these
are far less attractive methods to attackers: they
are high-bandwidth and less effective in capturing
all input. We also did not address kernel-mode key-
logging techniques with our approach, but these too
are uncommon in practical malware, as explained
earlier.

Because the keystroke noise technique is an ac-

tive technique (as opposed to a passive configuration
change), it was important to test the CPU overhead
incurred. As seen in Figure 4, the CPU overhead is
incredibly minimal: it is less than 0.3% of one core of
our test VM running on an early 2011 laptop with
a second generation 2GHz Intel Core i7. Some of
that CPU usage is due to the GUI of the demo app
itself. The RAM overhead is similarly minimal; but
again, what is pictured is mostly due to the demo
app GUI.

24

Conclusions

Although real-time keyboard input is effectively
masked from keyloggers by our approach, we did not
address clipboard-stealing malware. If a user were to
copy and paste sensitive information or credentials,
our current approach would not disrupt malware’s
ability to capture that information. Similarly, an
attacker could take a brute-force approach of cap-
turing what the user sees, and grab keyboard input
that way (screenshotting or even a live remote desk-
top session). For approaches like these, there are
other techniques that one could use. Perhaps they
would be similar to the keystroke noise concept (e.g.,
introduce noise into the display output channel, fil-
ter it out at a point after malware tries to grab it),
but that is research that remains to be done.

Console-mode applications don’t rely on Win-
dows messages, and as such, our method is not yet
compatible with them. Console mode applications
retrieve keyboard input differently, for example us-
ing the kbhit() and getkey() APIs. Likewise, any
Windows application that checks for keyboard input
without any use of Windows Messages (rare, but
theoretically possible), for example by just polling
GetKeyboardState(), is also not yet compatible
with our approach. There is nothing fundamentally
incompatible; we would just need to instrument a
different set of locations in the input path in order
to filter out injected keyboard input before it is ob-
served by console-mode applications or “abnormal”
keyboard state checking of this sort.

Another area for further development is in the
behavior of SendInput(). If we reverse engineer the
SendInput API, we may be able to reimplement it
in a way specifically suited for our task. Specifically
we would like the timing between batched input
elements to be controllable, while maintaining the
input interleaving protection that it provides when
called using batched input.

We discovered during research that a “low-
level keyboard hook” (SetWindowsHookEx() with
WH_KEYBOARD_LL) can check a flag on each call-
back called LLKHF_INJECTED, and know if the
keystroke was injected in software, e.g., by a call
to SendInput(). So in the future we would
also seek a way to prevent win32k.sys from set-
ting the LLKHF_INJECTED flag on our injected
keystrokes. This flag is set in the kernel by
win32k.sys!XxxKeyEvent, implying that it may re-
quire kernel-level code to alter this behavior. Al-

though this would seem to be a clear way to de-
feat our approach, it may not be so. Although we
have not tested it, any on-screen keyboard or re-
motely logged-on user’s key inputs supposedly come
through the system with this flag set, so a keylogger
may not want to filter on this flag. Once we pro-
pose loading kernel code to change a flag, though,
we may as well change our method of injecting input
and just avoid this problem entirely. By so doing we
could also likely address the problem of kernel-mode
keyloggers.

Acknowledgments

This work was partially funded by the Halting
Attacks Via Obstructing Configurations (HAVOC)
project under Mudge’s DARPA Cyber Fast Track
program, Digital Operatives IR&D, and our famous
Single Malt Gavage Funnel. With that said, all
opinions and hyperbolic, metaphoric, gastronomic,
trophic analogies expressed in this article are the au-
thor’s own and do not necessarily reflect the views
of DARPA or the United States government.

25

14:06 How likely are random bytes to be a NOP sled on ARM?

by Niek Timmers and Albert Spruyt

Howdy folks!
Any of you ever wondered what the probability

is for executing random bytes in order to do some-
thing useful? We certainly do. The team respon-
sible for analyzing the Nintendo 3DS might have
wondered about an answer when they identified the
1st stage boot loader of the security processor is
only encrypted and not authenticated.14 This al-
lowed them to execute random bytes in the security
processor by changing the original unauthenticated,
but encrypted, image. Using a trial and error ap-
proach, they were able to get lucky when the image
decrypts into code that jumps to a memory location
preloaded with arbitrary code. Game over for the
Nintendo 3DS security processor.

We generalize the potential attack primitive of
executing random bytes by focusing on one ques-
tion: What is the probability of executing random
bytes in a NOP-like fashion? NOP-like instructions
are those that do not impair the program’s contin-
uation, such as by crashing or looping.

Writing NOPs into a code region is a powerful
method which potentially allows full control over the
system’s execution. For example, the NOPs can be
used to remove a length check, leading to an ex-
ploitable buffer overflow. One can imagine various
practical scenarios to leverage this attack primitive,
both during boot and runtime of the system.

A practical scenario during boot is related to
a common feature implemented by secure embed-
ded devices: Secure Boot. This feature provides in-
tegrity and confidentiality of code stored in external
flash. Such implementations are compromised using
software attacks15 and hardware attacks.16 Depend-
ing on the implementation, it may be possible to
bypass the authentication but not the decryption.
In such a situation, similar to the Nintendo 3DS,
changing the original encrypted image will lead to
the execution of randomized bytes as the decryption
key is likely unknown.

During runtime, secure embedded devices often
provide hardware cryptographic accelerators that
implement Direct Memory Access (DMA). This
functionality allows on-the-fly decryption of memory
from location A to location B. It is of utmost im-

portance to implement proper restrictions to prevent
unprivileged entities from overwriting security sensi-
tive memory locations, such as code regions. When
such restrictions are implemented incorrectly, it po-
tentially leads to copying random bytes into code
regions.

The block size of the cipher impacts the size di-
rectly: 8 bytes for T/DES and 16 bytes for AES. Ad-
ditionally the cipher mode has an impact. When the
image is decrypted using ECB, an entire block will
be pseudo randomized without propagating to other
blocks. When the image is decrypted using CBC, an
entire block will be pseudo randomized. Addition-
ally, any changes in a cipher block will propagate
directly into the plain text of the subsequent block.
In other words, flipping a bit in the cipher text will
flip the bit at the same position in the plain text of
the subsequent block. This allows small modifica-
tions of the original plain text code which potential
leads to arbitrary code execution. Further details
for such attacks are for another time.

The pseudo random bytes executed in these sce-
narios must be executed in a NOP-like fashion. This
means they need too be decoded into: valid in-
structions and have no side-effect on the program’s
continuation. The amount of different instruction
matching these requirements are target dependent.
Whenever these requirements are not met, the de-
vice will likely crash.

We approximated the probability for executing
random bytes in a NOP-like fashion for Thumb and
ARM and under different conditions: QEMU, native
user and native bare-metal. For each execution, the
probability is approximated for executing 4, 8 and
16 random bytes. Other architectures or execution
states are not considered here.

14Arm9LoaderHax – Deeper Inside by Jason Dellaluce
15Amlogic S905 SoC: bypassing the (not so) Secure Boot to dump the BootROM by Frédéric Basse
16Bypassing Secure Boot using Fault Injection by Niek Timmers and Albert Spruyt at Black Hat Europe 2016

26

Executing in QEMU

The probability of executing random bytes in a
NOP-like fashion is determined using two pieces of
software: a Python wrapper and an Thumb/ARM
binary containing NOPs to be overwritten.

1 void main (void) {
. . .

3 p r i n t f ("FREE ") ;
asm volat i le (

5 "mov r1 , r1 " ; // Place ho lder by t e s
"mov r1 , r1 " ; // ""

7 "mov r1 , r1 " ; // ""
"mov r1 , r1 " ; // ""

9) ;
p r i n t f ("BEER! ") ;

11 . . .
}

This is cross compiled for Thumb and ARM,
then executed in QEMU.

arm−l inux−gnueabihf−gcc −o te s t−arm \
2 te s t−arm . c −s t a t i c −marm (−mthumb)

qemu−arm tes t−arm

Whenever the test program prints “FREE
BEER!” the instructions executed between the two
printf calls do not impact the program’s execution
negatively; that is, the instructions are NOP-like.
The Python wrapper updates the place holder bytes
with random bytes, executes the binary, and logs the
printed result.

The random bytes originate from /dev/urandom.
Executing the updated binary results in: intended
(NOP-like) executions, unintended executions (e.g.
only “FREE” is printed) and crashes. The results of
executing the binary ten thousand times, grouped
by type, are shown in Table 1. A small percentage
of the results are unclassified.

The results show that executing random bytes
in a NOP-like fashion has potential for emulated
Thumb/ARM code. The amount of random bytes
impact the probability directly. The density of bad
instructions, where the program crashes, is higher
for Thumb than for ARM. Let’s see if the same prob-
ability holds up for executing native code.

Cortex A9 as a Native User

The binary used to approximate the probability on
a native platform in user mode is similar as listed in
Section 2. Differently, this code is executed natively
on an ARM Cortex-A9 development board. The
code is developed, compiled and executing within
the Ubuntu 14.04 LTS operating system. A disas-
sembled representation of the ARM binary is shown
below:

1 10804 : e92d4800 push { fp , l r }
10808 : e28db004 add fp , sp , #4

3 1080 c : e b f f f f f 0 b l 107d4 <p1>
// These by t e s are updated by the

5 // python wrapper be f o r e each execu t ion .
10810 : e1a01001 mov r1 , r1

7 10814 : e1a01001 mov r1 , r1
10818 : e1a01001 mov r1 , r1

9 1081 c : e1a01001 mov r1 , r1
10820 : e b f f f f f 1 b l 107 ec <p2>

11 10824 : e8bd8800 pop { fp , pc}

The results of performing one thousand experi-
ments are listed in Table 2.

The results show that executing random bytes
in a NOP-like fashion is very similar between em-
ulated code and native user mode code. Let’s see
if the same probability holds up for executing bare-
metal code.

27

Cortex A9 as Native Bare Metal

The binary used to approximate the probability on
native platform in bare metal mode is implemented
in U-Boot. The code is very similar to that which
we used on Qemu and in userland. U-Boot is only
executed during boot and therefore the platform is
executed before each experiment. The target’s serial
interface is used for communication. A new com-
mand is added to U-Boot which is able to receive
random bytes via the serial interface, update the
placeholder bytes and execute the code.

All ARM CPU exceptions are handled by U-
Boot which allows us to classify the crashes ac-
cordingly. For example, the following exception is
printed on the serial interface when the random
bytes result in a illegal exception:

1 FREE undef ined i n s t r u c t i o n
pc : [<1 f f50218 >] l r : [<1 f f5020c >]

3 r e l o c pc : [<04016218>] l r : [<0401620c>]
sp : 1 eb19e68 ip : 0000000 c fp : 00000000

5 r10 : 00000000 r9 : 1 eb19ee8
r8 : 1 c091c09 r7 : 1 f f 5 0 3 f c r6 : 1 f f 5 0 3 f c

7 r5 : 00000000 r4 : 1 f f 50214 r3 : e0001000
r2 : 0000080a r1 : 1 f f 50214 r0 : 00000005

9 Flags : nZCv IRQs o f f FIQs o f f Mode SVC_32
Rese t t ing CPU . . .

The results of performing one thousand experi-
ments are listed in Table 3.

The results show that executing random bytes
in a NOP-like fashion is similar for bare-metal code
compared to emulated and native user mode code.
There seems to be less difference between Thumb
and ARM but that could be due statistics.

Conclusion

Let us wonder no more. The results of this arti-
cle tell us that the probability for executing random
bytes in a NOP-like fashion for Thumb an ARM is
significant enough to consider it a potentially rele-
vant attack primitive. The probability is very simi-
lar for execution of emulated code, native user-mode
code and bare-metal code. The number of ran-
dom bytes executed impact the probability directly
which matches our common sense. In Thumb mode,
the density of bad instructions where the program
crashes is higher than for ARM. One must realize
the true probability for a given target cannot be
determined in a generic fashion, thanks to memory
mapping, access restrictions, and the surrounding
code.

28

Type 4 bytes 8 bytes 16 bytes
NOP-like 32% / 52% 13% / 34% 4% / 13%
Illegal instruction 11% / 20% 14% / 29% 15% / 41%
Segmentation fault 52% / 23% 66% / 31% 73% / 40%
Unhandled CPU exception 1% / 2% 0% / 3% 0% / 4%
Unhandled ARM syscall 1% / 0% 1% / 1% 1% / 1%
Unhandled Syscall 1% / 1% 0% / 0% 0% / 0%
Unclassified 5% / 3% 6% / 2% 6% / 1%

Table 1. Probabilities for QEMU (Thumb / ARM)

Type 4 bytes 8 bytes 16 bytes
NOP-like 36% / 61% 13% / 39% 2% / 12%
Illegal instruction 13% / 19% 17% / 27% 23% / 40%
Segmentation fault 48% / 19% 66% / 33% 71% / 46%
Bus error 0% / 1% 0% / 1% 0% / 2%
Unclassified 3% / 0% 4% / 0% 4% / 0%

Table 2. Probabilities for native user (Thumb / ARM)

Type 4 bytes 8 bytes 16 bytes
NOP-like 53% / 63% 32% / 41% 7% / 19%
Undefined Instruction 16% / 20% 19% / 34% 25% / 51%
Data Abort 17% / 4% 25% / 7% 33% / 11%
Prefetch Abort 1% / 1% 1% / 1% 2% / 1%
Unclassified 15% / 12% 23% / 18% 33% / 18%

Table 3. Probabilities for native bare metal (Thumb / ARM)

29

14:07 Routing Ethernet over GDB and SWD for Glitching

by Micah Elizabeth Scott

Hello again friendly and distinguished neighbors!
As you can see, I’ve already started compliment-
ing you, in part to distract from the tiny horrors
ahead. Lately I’ve been spending some time ex-
perimenting on chips, injecting faults, and gener-
ally trying to guess how they are programmed. The
results are a delightful topic that we have visited
some in the past, and I’ll surely weave some new sto-
ries about my results in the brighter days to come.
For now, deep in the thick of things, you see, the
glitching is monotonous work. Today’s article is a
tidbit about one particular solution to a problem I
found while experimenting with voltage glitching a
network-connected microcontroller.

Problem with Time Bubbles

Slow experiments repeat for days, and the experi-
ments are often made slower on purpose by under-
clocking, broadening the little glitch targets we hope
to peck at in order for the chip to release new secrets.
To whatever extent I can, I like to control the clock
frequency of a device under investigation. It helps
to vary at least one clock to understand which parts
of the system are driven by which clock sources. A
slower clock can reduce the complexity of the tools
you need for power analysis, accurate fault injection,
and bus tracing.

If we had a system with a fully static design
and a single clock, there wouldn’t be any limit
to the underclocking, and the system would follow
the same execution path even if individual clock
edges were delivered bi-weekly by pigeon. In real-
ity, systems usually have additional clock domains
driven by free-running oscillators or phase-locked
loops (PLLs). This system design can impose lim-
its on the practical amount of underclock you can
achieve before the PLL fails to lock, or a watchdog
timer expires before the software can make sufficient
progress. On the bright side, these individual limita-
tions can themselves reveal interesting information
about the system’s construction, and it may even
be possible to introduce timing-related glitches in-
tentionally by varying the clock speed.

These experiments create a bubble of alternate
time, warped to your experiment’s advantage. Any
protocol that traverses the boundary between un-
derclocked and real-time domains may need to be

modified to account for the time difference. An SPI
peripheral easily accepts a range of SCLK frequen-
cies, but a serial port expecting 115,200 baud will
have to know it’s getting 25,920 baud instead. Most
serial peripherals can handle this perfectly accept-
ably, but you may notice that operating systems and
programming APIs start to turn their nose up at
such a strange bit rate. Things become even less
convenient with fixed-rate protocols like USB and
Ethernet.

As fun as it would be to implement a custom
Ethernet PHY that supports arbitrary clock scal-
ing, it’s usually more practical to extend the time
bubble, slowing the input clock presented to an oth-
erwise mundane Ethernet controller. For this tech-
nique to work, the peripheral needs a flexible inter-
facing clock. A USB-to-Ethernet bridge like the one
on-board a Raspberry Pi could be underclocked, but
then it couldn’t speak with the USB host controller.
PCI Express would have a similar problem.

SPI peripherals are handy for this purpose. My
earlier Facewhisperer mashup of Facedancer and
ChipWhisperer spoke underclocked USB by includ-
ing a MAX3421E chip in the victim device’s time
domain. This can successfully break free from the
time bubble, thanks to this chip talking over an SPI
interface that can run at a flexible rate relative to
the USB clock.

At first I tried to apply this same technique to
Ethernet, using the ENC28J60, a 10baseT Ethernet
controller that speaks SPI. This is even particularly
easy to set up in tandem with a (non-underclocked)
Raspberry Pi, thanks to some handy device tree
overlays. This worked to a point, but the ENC28J60
proved to be less underclockable than my target mi-
crocontroller.

There aren’t many SPI Ethernet controllers to
choose from. I only know of the ’28J60 from Mi-
crochip and its newer siblings with 100baseT sup-
port. In this case, it was inconvenient that I was
dealing with two very different internal PHY designs
on each side of the now very out-of-spec Ethernet
link. I started making electrical changes, such as re-
moving the AC coupling transformers, which needed
somewhat different kludges for each type of PHY.
This was getting frustrating, and seemed to be lim-
iting the consistency of detecting a link successfully
at such weird clock rates.

30

At this point, it seemed like it would be awfully
convenient if I could just use the exact same kind of
PHY on both sides of the link. I could have rewrit-
ten my glitch experiment request generator program
as a firmware for the same type of microcontroller,
but I preferred to keep the test code written in
Python on a roomy computer so I could prototype
changes quickly. These constraints pointed toward a
fun approach that I had not seen anyone try before.

Ethernet over GDB

When I’m designing anything, but especially when
I’m prototyping, I get a bit alarmed any time the de-
sign appears to have too many degrees of freedom.
It usually means I could trade some of those extra
freedoms for the constraints offered by an existing
component somehow, and save from reinventing all
the boring wheels.

The boring wheel I’d imagined here would have
been a firmware image that perhaps implements a
simple proxy that shuttles network frames and per-
haps link status information between the on-chip
Ethernet and an arbitrary SPI slave implementa-
tion. The biggest downside to this is that the SPI
interface would have to speak another custom pro-
tocol, with yet another chunk of code necessary
to bridge that SPI interface to something usable
like a Linux network tap. It’s tempting to imple-
ment standard USB networking, but an integrated
USB controller would ultimately use the same clock
source as the Ethernet PHY. It’s tempting to emu-
late the ENC28J60’s SPI protocol to use its exist-
ing Linux driver, but emulating this protocol’s quick
turnaround between address and data without get-
ting an FPGA involved seemed unlikely.

In this case, the microcontroller hardware was
already well-equipped to shuttle data between its
on-chip Ethernet MAC and a list of packet buffers
in main RAM. I eventually want a network device
in Linux that I can really hang out with, captur-
ing packets and setting up bridges and all. So, in
the interest of eliminating as much glue as possi-
ble, I should be talking to the MAC from some code
that’s also capable of creating a Linux network tap.

31

int main (void) {
2 MAP_SysCtlMOSCConfigSet (SYSCTL_MOSC_HIGHFREQ) ;

g_ui32SysClock = MAP_SysCtlClockFreqSet ((SYSCTL_XTAL_25MHZ |
4 SYSCTL_OSC_MAIN |

SYSCTL_USE_PLL |
6 SYSCTL_CFG_VCO_480) , 120000000) ;

8 PinoutSet (true , f a l s e) ;

10 MAP_SysCtlPeripheralEnable (SYSCTL_PERIPH_EMAC0) ;
MAP_SysCtlPeripheralReset (SYSCTL_PERIPH_EMAC0) ;

12 MAP_SysCtlPeripheralEnable (SYSCTL_PERIPH_EPHY0) ;
MAP_SysCtlPeripheralReset (SYSCTL_PERIPH_EPHY0) ;

14 while (! MAP_SysCtlPeripheralReady (SYSCTL_PERIPH_EMAC0)) ;

16 MAP_EMACPHYConfigSet(EMAC0_BASE,
EMAC_PHY_TYPE_INTERNAL |

18 EMAC_PHY_INT_MDI_SWAP |
EMAC_PHY_INT_FAST_L_UP_DETECT |

20 EMAC_PHY_INT_EXT_FULL_DUPLEX |
EMAC_PHY_FORCE_10B_T_FULL_DUPLEX) ;

22
MAP_EMACReset(EMAC0_BASE) ;

24
MAP_EMACInit(EMAC0_BASE, g_ui32SysClock ,

26 EMAC_BCONFIG_MIXED_BURST | EMAC_BCONFIG_PRIORITY_FIXED,
8 , 8 , 0) ;

28
MAP_EMACConfigSet(EMAC0_BASE,

30 (EMAC_CONFIG_FULL_DUPLEX |
EMAC_CONFIG_7BYTE_PREAMBLE |

32 EMAC_CONFIG_IF_GAP_96BITS |
EMAC_CONFIG_USE_MACADDR0 |

34 EMAC_CONFIG_SA_FROM_DESCRIPTOR |
EMAC_CONFIG_BO_LIMIT_1024) ,

36 (EMAC_MODE_RX_STORE_FORWARD |
EMAC_MODE_TX_STORE_FORWARD) , 0) ;

38
MAP_EMACFrameFilterSet(EMAC0_BASE, EMAC_FRMFILTER_RX_ALL) ;

40
init_dma_frames () ;

42
MAP_EMACTxEnable(EMAC0_BASE) ;

44 MAP_EMACRxEnable(EMAC0_BASE) ;

46 while (1) {
capture_phy_regs () ;

48 __asm__ volat i le ("bkpt") ;
}

50 }

Figure 5. TM4C129x Firmware

32

This is where GDB, OpenOCD, and the Rasp-
berry Pi really save the day. I thought I was go-
ing to be bit-banging the Serial Wire Debug (SWD)
protocol again on some microcontroller, then build-
ing up from there all of the device-specific goodies
necessary to access the memory and peripheral bus,
set up the system clocks, and finally do some ac-
tual internetworking. It involves a lot of tedious
reimplementation of things the semiconductor ven-
dor already has working in a different language or
a different format. But with GDB, we can make a
minimal Ethernet setup firmware with whatever li-
braries we like, let it initialize the hardware, then
inspect the symbols we need at runtime to handle
packets.

At this point I can already hear some of you
groaning about how slow this must be. While this
debug bus won’t be smoking the tires on a 100baseT
switch any time soon, it’s certainly usable for experi-
mentation. In the specific setup I’ll be talking about
in more detail below, the bit-bang SWD bus runs at
about 10 megabits per second peak, which turns into
an actual sustained Ethernet throughput of around
130 kilobytes per second. It’s faster than many in-
ternet connections I’ve had, and for microcontroller
work it’s been more than enough.

There’s a trick to how this crazy network driver
is able to run at such blazingly adequate speeds.
Odds are if you’re used to slow on-chip debugging,
most of the delays have been due to slow round trips
in your communication with the debug adapter.
How bad this is depends on how low-level your de-
bug adapter protocol happens to be. Does it make
you schedule a USB transfer for every debug trans-
action? There goes a millisecond. Some adapters
are much worse, some are a little better. Thanks
to the Raspberry Pi 2 and 3 with their fast CPU
and memory-mapped GPIOs, an OpenOCD process
in userspace can bitbang SWD at rates competi-
tive with a standalone debug adapter. By elimi-
nating the chunky USB latencies we can hold con-
versations between hardware and Python code im-
pressively fast. Idle times between SWD transfers
are 10-50 microseconds when we’re staying within
OpenOCD, and as low as 150µs when we journey
all the way back to Python code.

After building up a working network interface,
it’s easy to go a little further to add debugging hooks
specific to your situation. In my voltage glitching
setup, I wanted some hardware to know in advance
when it was about to get a specific packet. I could

add some string matching code to the Python proxy,
using the Pi’s GPIOs to signal the results of catego-
rizing packets of interest. This signal itself won’t be
synchronized with the Ethernet traffic, but it was
perfect for use as context when generating synchro-
nized triggers on a separate FPGA.

You’re being awfully vague, I thought
there was a proof of concept here?

Okay, okay. Yes, I have one, and of course I’ll share
it here. But I did have a point; the whole process
turned out to be a lot more generic than I expected,
thanks to the functionality of OpenOCD and GDB.
The actual code I wrote is very specific to the SoC
I’m working with, but that’s because it reads like a
network driver split into a C and a Python portion.

If you’re interested in a flexibly-clocked Ether-
net adapter for your Raspberry Pi, or you’re hack-
ing at another network-connected device with the
same micro, perhaps my code will interest you as-is,
but ultimately I hope my humble PoC might inspire
you to try a similar technique with other micros and
peripherals.

33

Tiva GDBthernet

So the specific chip I’ve been working with is a 120
MHz ARM Cortex-M4F core with on-board Ether-
net, the TM4C129x, otherwise known as the Tiva-C
series from Texas Instruments. Luckily there’s al-
ready a nice open source project to support building
firmware for this platform with GCC.17 The plat-
form includes some networking examples based on
the uIP and lwIP stacks. For our purposes, we need
to dig a bit lower. The on-chip Ethernet MAC uses
DMA both to transfer packet contents and to access
a queue made from DMA Descriptor structures.

This data structure is convenient enough to
access directly from Python when we’re shuttling
packets back and forth, but setting up the periph-
eral involves a boatload of magic numbers that I’d
prefer not to fuss with. We can mostly reuse ex-
isting library code for this. The main firmware file
gdbthernet.c uses a viscous wad of library calls to
set up all the hardware we need, before getting itself
stuck in a breakpoint loop, shown in Figure 5.

Everything in this file only needs to exist for
convenience. The micro doesn’t need any firmware
whatsoever, we could set up everything from GDB.
But it’s easier to reuse whatever we can. You may
have noticed the call to capture_phy_regs() above.
We have only indirect access to the PHY registers
via the Ethernet MAC, so it was a bit more conve-
nient to reuse existing library code for reading those
registers to determine the link state.

On the Raspberry Pi side, we start with a shell
script proxy.sh that spawns an OpenOCD and
GDB process, and tells GDB to run gdb_net_-

host.py. Some platform-specific configuration for
OpenOCD tells it how to get to the processor and
which micro we’re dealing with. GDB provides quite
high-level access to parse expressions in the target
language, and the Python API wraps those results
nicely in data structures that mimic the native lan-
guage types. My current approach has been to use
this parsing sparingly, though, since it seems to
leak memory. Early on in gdb_net_host.py, we
scrape all the constants we’ll be needing from the
firmware’s debug symbols. (Figure 6.)

From here on, we’ll expect to chug through all
of the Raspberry Pi CPU cycles we can. There’s
no interrupt signaling back to the debugger, every-
thing has to be based on polling. We could poll for
Ethernet interrupts, but it’s more expedient to poll
the DMA Descriptor directly, since that’s the data
we actually want. Here’s how we receive Ethernet
frames and forward them to our tap device. (Fig-
ure 7.)

The transmit side is similar, but it’s driven by
the availability of a packet on the tap interface. You
can see the hooks for GPIO trigger outputs in Fig-
ure 8.

That’s just about all it takes to implement a
pretty okay network interface for the Raspberry Pi.
Attached you’ll find the few necessary but boring
tidbits I’ve left out above, like link state detection
and debugger setup. I’ve been pretty happy with
the results. This approach is even comparable in
speed to the ENC28J60 driver, if you don’t mind
the astronomical CPU load. I hope this trick in-
spires you to create weird peripheral mashups using
GDB and the Raspberry Pi. If you do, please be a
good neighbor and consider documenting your ex-
perience for others. Happy hacking!

17git clone https://github.com/yuvadm/tiva-c

34

i n f = gdb . s e l e c t e d_ i n f e r i o r ()
2 num_rx = int (gdb . parse_and_eval (’ s i z e o f g_rxBuffer / s i z e o f g_rxBuffer [0] ’))

num_tx = int (gdb . parse_and_eval (’ s i z e o f g_txBuffer / s i z e o f g_txBuffer [0] ’))
4 g_phy_bmcr = int (gdb . parse_and_eval (’ (i n t)&g_phy . bmcr ’))

g_phy_bmsr = int (gdb . parse_and_eval (’ (i n t)&g_phy . bmsr ’))
6 g_phy_cfg1 = int (gdb . parse_and_eval (’ (i n t)&g_phy . c fg1 ’))

g_phy_sts = int (gdb . parse_and_eval (’ (i n t)&g_phy . s t s ’))
8 rx_status = [int (gdb . parse_and_eval (

’ (i n t)&g_rxBuffer [%d] . desc . u i 32Ct r lS ta tu s ’ % i)) for i in range (num_rx)]
10 rx_frame = [int (gdb . parse_and_eval (

’ (i n t) g_rxBuffer [%d] . frame ’ % i)) for i in range (num_rx)]
12 tx_status = [int (gdb . parse_and_eval (

’ (i n t)&g_txBuffer [%d] . desc . u i 32Ct r lS ta tu s ’ % i)) for i in range (num_tx)]
14 tx_count = [int (gdb . parse_and_eval (

’ (i n t)&g_txBuffer [%d] . desc . ui32Count ’ % i)) for i in range (num_tx)]
16 tx_frame = [int (gdb . parse_and_eval (’ (i n t) g_txBuffer [%d] . frame ’ % i)) for i in range (num_tx)]

Figure 6. Fetching Debug Symbols

next_rx = 0
2

de f rx_poll_demand () :
4 # Rx Po l l Demand (wake up MAC i f i t ’ s suspended)

i n f . write_memory (0x400ECC08 , s t r u c t . pack (’<I ’ , 0xFFFFFFFF))
6

de f pol l_rx (tap) :
8 g l oba l next_rx

10 s t a tu s = s t r u c t . unpack (’<I ’ , i n f . read_memory (rx_status [next_rx] , 4)) [0]
i f s t a tu s & (1 << 31) :

12 # Hardware s t i l l owns t h i s bu f f e r ; t ry l a t e r
re turn

14
i f s t a tu s & (1 << 11) :

16 p r i n t (’RX Overflow e r r o r ’)
e l i f s t a tu s & (1 << 12) :

18 p r i n t (’RX Length e r r o r ’)
e l i f s t a tu s & (1 << 3) :

20 p r i n t (’RX Receive e r r o r ’)
e l i f s t a tu s & (1 << 1) :

22 p r i n t (’RX CRC e r r o r ’)
e l i f (s t a tu s & (1 << 8)) and (s t a tu s & (1 << 9)) :

24 # Complete frame (f i r s t and l a s t par t s) , s t r i p 4−byte FCS
length = ((s t a tu s >> 16) & 0x3FFF) − 4

26 frame = i n f . read_memory (rx_frame [next_rx] , l ength)
i f VERBOSE:

28 p r i n t (’RX %r ’ % b i n a s c i i . b2a_hex (frame))
tap . wr i t e (frame)

30 e l s e :
p r i n t (’RX unhandled s t a tu s %08x ’ % s ta tu s)

32
Return the bu f f e r to hardware , advance to the next one

34 i n f . write_memory (rx_status [next_rx] , s t r u c t . pack (’<I ’ , 0x80000000))
next_rx = (next_rx + 1) % num_rx

36 rx_poll_demand ()
re turn True

Figure 7. Ethernet Frame RX

35

1 next_tx = 0
tx_buffer_stuck_count = 0

3
de f tx_poll_demand () :

5 # Tx Po l l Demand (wake up MAC i f i t ’ s suspended)
i n f . write_memory (0x400ECC04 , s t r u c t . pack (’<I ’ , 0xFFFFFFFF))

7
de f pol l_tx (tap) :

9 g l oba l next_tx
g l oba l tx_buffer_stuck_count

11
s t a tu s = s t r u c t . unpack (’<I ’ , i n f . read_memory (tx_status [next_tx] , 4)) [0]

13 i f s t a tu s & (1 << 31) :
p r i n t (’TX wait ing for bu f f e r %d ’ % next_tx)

15 tx_buffer_stuck_count += 1
i f tx_buffer_stuck_count > 5 :

17 gdb . execute (’ run ’)
update_phy_status ()

19 tx_poll_demand ()
re turn

21
tx_buffer_stuck_count = 0

23 i f not s e l e c t . s e l e c t ([tap . f i l e n o ()] , [] , [] , 0) [0] :
r e turn

25 frame = tap . read (4096)

27 match_low = TRIGGER and frame . f i nd (TRIGGER_LOW) >= 0
match_high = TRIGGER and frame . f i nd (TRIGGER_HIGH) >= 0

29
i f VERBOSE:

31 p r in t (’TX %r ’ % b i n a s c i i . b2a_hex (frame))

33 i f match_low :
i f VERBOSE:

35 p r in t (’− ’ ∗ 60)
GPIO. output (TRIGGER_PIN, GPIO.LOW)

37
i n f . write_memory (tx_frame [next_tx] , frame)

39 i n f . write_memory (tx_count [next_tx] , s t r u c t . pack (’<I ’ , l en (frame)))
i n f . write_memory (tx_status [next_tx] , s t r u c t . pack (’<I ’ ,

41 0x80000000 | # DES0_RX_CTRL_OWN
0x20000000 | # DES0_TX_CTRL_LAST_SEG

43 0x10000000 | # DES0_TX_CTRL_FIRST_SEG
0x00100000)) # DES0_TX_CTRL_CHAINED

45 next_tx = (next_tx + 1) % num_tx

47 i f match_high :
GPIO. output (TRIGGER_PIN, GPIO.HIGH)

49 i f VERBOSE:
p r i n t (’+ ’ ∗ 60)

51
tx_poll_demand ()

53 re turn True

Figure 8. Ethernet Frame TX

36

14:08 Control Panel Vulnerabilities

by Geoff Chappell

Back in 2010, as what I then feared might be
“the last new work that I will ever publish,” I wrote
The CPL Icon Loading Vulnerability18 about what
Microsoft called a Shortcut Icon Loading Vulnerabil-
ity.19 You likely remember this vulnerability. It was
notorious for having been exploited by the Stuxnet
worm to spread between computers via removable
media. Just browsing the files on an infected USB
drive was enough to get the worm loaded and exe-
cuting.

Years later, over drinks at a bar in the East Vil-
lage, I brought up this case to support a small provo-
cation that the computer security industry does not
rate the pursuit of detail as highly as it might—
or even as highly as it likes to claim. Thus did
I recently reread my 2010 article, which I always
was unhappy to have put aside in haste, and looked
again at what others had written. To my surprise—
or not, given that I had predicted “the defect may
not be properly fixed”—I saw that others had re-
visited the issue too, in 2015 while I wasn’t look-
ing. As reported by Dave Weinstein in Full details

on CVE-2015-0096 and the failed MS10-046 Stuxnet

fix,20 Michael Heerklotz showed that Microsoft had
not properly fixed the vulnerability in 2010. Numer-
ous others jumped on the bandwagon of scoffing at
Microsoft for having needed a second go. I am writ-
ing about this vulnerability now because I think we
might do well to have a third look!

Don’t get too excited, though. It’s not that
Microsoft’s second fix, of a DLL Planting Remote
Code Execution Vulnerability,21 still hasn’t com-
pletely closed off the possibilities for exploitation.
I’m not saying that Microsoft needs a third attempt.
I will show, however, that the exploitation that mo-
tivated the second fix depends on some extraordi-
narily quirky behaviour that this second fix left in
place. It is not credibly retained for backwards com-
patibility. That it persists is arguably a sign that we
still have a long way to go for how the computer se-
curity industry examines software for vulnerabilities
and for how software manufacturers fix them.

CVE-2010-2568

You’d hope that Stuxnet’s trick has long been un-
derstood in detail by everyone who ever cared, but
let’s have a quick summary anyway. Among the
browsed files is a shortcut (.LNK) file that presents
as its target a Control Panel item whose icon is to
be resolved dynamically. Browsing the shortcut in-
duces Windows to load and execute the correspond-
ing CPL module to ask it which icon to show. This
may be all well and good if the CPL module ac-
tually is registered, so that its Control Panel items
would show when browsing the Control Panel. The
exploitation is simply that the target’s CPL module
is (still) not registered but is (instead) malware.

Chances are that you remember CVE-2010-2568
and its exploitation differently. After all, Microsoft
had it that the vulnerability “exists because Win-
dows incorrectly parses shortcuts” and is exploited
by “a specially crafted shortcut.” Some malware an-
alysts went further and talked of a “malformed .LNK

file.”
But that’s all rubbish! A syntactically valid .LNK

file for the exploitation can be created using nothing
but the ordinary user interface for creating a short-
cut to a Control Panel item. Suppose an attacker
has written malware in the form of a CPL module
that hosts a Control Panel item whose icon is to be
resolved dynamically. Then all the attacker has to
do at the attacker’s computer is as follows.

• First copy this CPL module to the USB drive;

• register this CPL module so that it will show
in the Control Panel;

• open the Control Panel and find the Control
Panel item; and,

• Ctrl-Shift drag this item to the USB drive to
create a .LNK file.

Call the result a “specially crafted shortcut” if
you want, but it looks to me like a very ordinary
shortcut created by very ordinary steps. When the
USB drive is browsed on the victim’s computer,

18http://www.geoffchappell.com/notes/security/stuxnet/ctrlfldr.htm
19MS10-046 and CVE-2010-2568
20HP Enterprise, March 2015
21MS15-020, CVE-2015-0096

37

attacker’s .LNK file on the USB drive is correctly
parsed to discover that it’s a shortcut to a Con-
trol Panel item that’s hosted by the attacker’s CPL
module on the USB drive. Though this CPL mod-
ule is not registered for execution as a CPL module
on the victim’s computer, it does get executed. The
cause of this unwanted execution is entirely that the
Control Panel is credulous that what is said to be a
Control Panel item actually is one. What the Con-
trol Panel was vulnerable to was not a parsing error
but a spoof.22

Microsoft certainly understood this at the time,
for even though the words Control Panel do not
appear in Microsoft’s description of the vulnerabil-
ity (except in boilerplate directions for such things
as applying patches and workarounds), the essence
of the first fix was the addition to shell32.dll

of a routine that symbol files tell us is named
CControlPanelFolder::_IsRegisteredCPLApplet.

Control Panel Icons

This CControlPanelFolder class is the shell’s im-
plementation of the COM class that is creatable
from the Control Panel’s well-known CLSID. Asking
which icon to show for a Control Panel item starts
with a call to this class’ GetUIObjectOf method to
get an IExtractIcon interface to a temporary ob-
ject that represents the given item. Calling this in-
terface’s GetIconLocation method then gets direc-
tions for where to load the icon from.

The input to GetUIObjectOf is a binary pack-
aging of the item’s basic characteristics, which I’ll
refer to collectively as the item ID. The important
ones for our purposes are: a pathname to the CPL
module that hosts the item; an index for the item’s
icon among the module’s resources; and a display
name for the item. The case of interest is that when
the icon index is zero, the icon is not cached from
any prior execution of the CPL module, but is to
be resolved dynamically, i.e., by asking the CPL
module. Proceeding to GetIconLocation causes the
CPL module to be loaded, called and unloaded.

This is all by design. It’s a design with more
moving parts than some would like, especially for
just this one objective. But it fits the generality of
shell folders so that highly abstracted and widely
varying shell folders can present a broadly consis-
tent user interface, while meeting a particular goal
for the Control Panel. It’s what lets a Control Panel
item, or a shortcut to one, change its icon according
to the current state of whatever the item exists to
control.

I stress this because more than a few commenta-
tors blame the vulnerability on what they say was a
bad design decision decades ago to load icons from
DLLs, as if this of itself risks getting the DLL to
execute. What happens is instead much more spe-
cific. Though CPL modules are DLLs and do have
icons among their resources, the reason a CPL mod-
ule may get executed for its icon is not to get the

22Although parser bugs have a special place in Pastor’s heart, it’s good to be reminded occasionally that not every bug is a
parser bug, and that there are other buggy things besides parsers!—PML

38

icon but to ask explicitly which icon to get.

Note that I have not tied down who calls
GetUIObjectOf or where the item ID comes from.
The usual caller is SHELL32 itself, as a consequence
of opening the Control Panel, e.g., in the Windows
Explorer, to browse it for items to show. Each item
ID is in this case being fed back to the class, having
been produced by other methods while enumerating
the items. In Stuxnet’s exploit the caller is again
SHELL32, but in response to browsing a shortcut to
one Control Panel item. The item ID is in this case
parsed from a shortcut (.LNK) file. Another way the
call can come from within SHELL32 is automatically
when starting the shell if a Control Panel item has
been pinned to the Start Menu. The item ID is in
this case parsed from registry data. More generally,
the call can come from just about anywhere, and the
item ID can come from just about anywhere, too.

One thing is common to all these cases, however,
because the binary format of this item ID is docu-
mented only as being opaque to everyone but the
Control Panel. If everyone plays by the rules, any
item ID that the Control Panel’s GetUIObjectOf

ever receives can only have been obtained from some
earlier interaction with the Control Panel. (Though
not necessarily the same Control Panel!)

Input Validation

As security researchers, we’ve all seen this movie
before—in multiple re-runs, even. Among the lax
practices that were common once but which we now
regard as hopelessly naive is that a program trusts
what it reads from a file or a registry value, etc., on
the grounds that the storage was private to the pro-
gram or anyway won’t have gotten messed with. Not
very long ago, programs routinely didn’t even check
that such input was syntactically valid. Nowadays,
we expect programs to check not just the syntax of
their input but the meaning, so that they are not
tricked into actions for which the present provider
is not authorised (or ought to not even know how to
ask).

For the Control Panel, the risk is that even if
the item ID has the correct syntax what actually
gets parsed from it may be stale. The specified
CPL module was perhaps registered for execution
some time ago but isn’t now. Or, perhaps, it is still
registered, but only for some other user or on some
other computer. And this is just what can go wrong

even though all the software that’s involved plays
by the rules. As hackers, we know very well that
not all software does play by the rules, and that
some deliberately makes mischief. That the format
of the item ID is not documented will not stop a
sufficiently skilled reverse engineer from figuring it
out, which opens up the extra risk that an item ID
may be confected. (Stick with me on this, because
we’ll do it ourselves later.)

Asking which icon to show for a Control Panel
item gives an object-lesson in how messy the
progress towards what we now think of as minimally
prudent validation can be. Not until Windows 2000
did the Control Panel implementation make even
the briefest check that an item ID it received was
syntactically plausible. Worse, even though Win-
dows NT 4.0 had introduced a second format, to
support Unicode, it differentiated the two without
questioning whether it had been given either. When
the check for syntax did come, it was only that the
item ID was not too small, and that the icon index
was within a supported range.

Checking that the module’s pathname and the
item’s display name, if present, were actually null-
terminated strings that lay fully within the received
data wasn’t even attempted until Windows 7. I say
attempted because this first attempt at coding it
was defective. A malformed item ID could induce
SHELL32 to read a byte from outside the item ID—
only as far as 10 bytes beyond, and thus unlikely
to access an invalid address, but outside nonethe-
less. Even a small bug in code for input validation
is surely not welcome, but what I want to draw at-
tention to is that this bug conspicuously was not
addressed by the fix of CVE-2010-2568. A serious
check of the supposed strings in the item ID came
soon, but not, as far as I know, until later in 2010
for Windows 7 SP1.

Please take this in for a moment. While Mi-
crosoft worked to close off the spoof by having
GetUIObjectOf check that the CPL module as
named in the item ID is one that can be allowed
to execute, Microsoft described the vulnerability as
a parsing error—yet did nothing about errors in pre-
existing code that checked the item ID for syntax!
Wouldn’t you think that if you’re telling the world
that the problem is a parsing error, then you’d want
to look hard into everything nearby that involves
any sort of parsing?

The suggestion is strong that Microsoft’s talk of

23I wonder what would happen if programmers got in the habit of taking the right approach—pitchforks applied to the protocol

39

a parsing error was only ever a sleight of hand. As
programmers, we’ve all written code with parsing
errors. So many edge cases!23 To have such an er-
ror in your otherwise well-written code is only in-
evitable. Software is hand-crafted, after all. To talk
of a parsing error is to appeal to the critics’ recogni-
tion of fallibility. A parsing error can be the sort of
an easy slip-up that gets you a 99 instead of a 100
on a test.

Falling for a spoof, however, seems more like a
conceptual design failure. It’s only natural that Mi-
crosoft directed attention to one rather than the
other. My only question for Microsoft is how de-
liberate was the misdirection. Why so many se-
curity researchers went along with it, I won’t ever
know. This, too, is a conceptual failure—–and not
just mine.

First Fix

Still, it’s a plus that fixing CVE-2010-2568 meant
not only getting the item ID checked ever so slightly
better for syntax, but also checking it for its mean-
ing, too. Checking, however, is only the start. What
do you do about a check that fails?

Were it up to me, thinking just of what I’d like
for my own use of my own computer, I’d have all
CControlPanelFolder methods that take an item
ID as input return an error if given any item ID
that specifies a CPL module that is not currently
registered. My view would be that even if the item
ID is only stale rather than confected (keep read-
ing!), then wherever or whenever the specified CPL
module is or was registered, it’s not registered now

for my use on this computer—and so it shouldn’t
show if I browsed the Control Panel. I’d rather not
accept it for any purpose at all, let alone run the
risk that it gets executed.

Microsoft’s view, whether for a good reason or
bad, was nothing like this firm. First, it regarded
the problem case as more narrow, not just that the
specified CPL module is not currently registered (so
that the item ID is at least stale, if not actually
faked), but also that the specified icon index is zero
(this being, we hope, the only route to unwanted ex-
ecution) and anyway only for GetUIObjectOf when
queried for an IExtractIcon interface. Second, the
fix didn’t reject but sanitised.24 It let the problem
case through, but as if the icon index were given as

-1 instead of 0.

Perhaps this relaxed attitude was motivated just
by a general (and understandable) desire for the
least possible change. Perhaps there was a known
case that had to be supported for backwards com-
patibility. I can’t know either way, but what I hope
you’ve already woken to is the following contrast be-
tween rejection and sanitisation. To reject suspect
input may be more brutal than you need, but it has
the merit of certainty. The suspect input goes no
further, and any innocent caller should at least have
anticipated that you return an error. To “sanitise”
suspect input and proceed as if all will now be fine
is to depend on the deeper implementation—which,
as you already know, had not checked this input for
itself!

What Lies Beneath

By deeper implementation I mean to remind you
that GetUIObjectOf is just the entry point for ask-
ing which icon to show. There is still a long, long
way to go: first for the temporary object that sup-
plies the GetIconLocation method for the given
item; and then, though apparently only if the pre-
ceding stage has zero for the icon index, to the more
general support for loading and calling CPL mod-
ules. Moreover, this long, long way goes through old,
old code, with all the problems that can come from
that. To depend on any of it for fixing a bug, es-
pecially one that you know real-world attackers are
probing for edge cases, seems—at best—foolhardy.

To sense how foolhardy, let’s have some demon-
strations of where this deeper implementation can
go wrong. An attacker whose one goal is to see
if the first fix can be worked around would most
easily follow the execution from GetUIObjectOf

down. Many security researchers would follow, too—
perhaps mumbling that their lot is always to be re-
acting to the attackers and never getting ahead. One
way to get ahead is to study in advance as much of
the general as you can so that you’re better pre-
pared whenever you have to look into the specific.
This is why, when I examine what might go wrong
with trying to fix CVE-2010-2568 by letting sani-
tised input through to the deeper implementation,
I work in what you may think is the reverse of the
natural direction.

designers—to address the root cause of these edge cases. —PML.
24When neighbors whose software you’d like to trust tell you proudly that they “sanitize” input and “fix” it, so that inputs

coming in as invalid would still be used—run. You’ll thank us later. —PML

40

Loading and Calling

Where we look at first into the deeper implementa-
tion is therefore the general support for loading and
calling of CPL modules, but particularly of a CPL
module that hosts a Control Panel item whose icon
is to be resolved dynamically. For my 2010 article,
I presented such a simple example.25

Whenever this CPL module is loaded, the first
call to its exported CPlApplet function produces a
message box that asks “Did you want me?”, and
whose title shows the CPL module’s pathname.
That much is done so that we can see when the
CPL module gets loaded. What makes this CPL
module distinctively of the sort we want to under-
stand is that when we call to CPlApplet for the
CPL_INQUIRE message, the answer for the icon in-
dex is zero.

Install There are several ways to register a
CPL module for execution, but the easiest is done
through—–wait for it—–the registry. Save the CPL
module as test.cpl in some directory whose path,
for simplicity and definiteness, contains no spaces
and is not ridiculously long. Then create the follow-
ing registry value shown in Figure 9.

To test, open the Control Panel so that it shows
a list of items, not categories, and confirm that you
don’t just see an item named Test, but also see its
message box. Yes, our CPL module gets loaded and

executed just for browsing the Control Panel. In-
deed, it gets loaded and executed multiple times.
(Watch out for extra message boxes lurking behind
the Control Panel.) Though it’s not necessary for
our purposes, you might, for completeness, confirm
that the Test item does launch. When satisfied with
the CPL module in this configuration as a base state,
close any message boxes that remain open, close the
Control Panel, too, and then try a few quick demon-
strations.

By the way—–I say it as if it’s incidental, even
though I can’t stress it enough—two of these demon-
strations begin by varying the circumstances as even
a novice mischief-maker might. Each depends on a
little extra step or rearrangement that you might
stumble onto, especially if your experimental tech-
nique is good, but which is very much easier to add
if its relevance is predicted from theoretical analysis.

If you doubt me, don’t read on right away, but in-
stead take my cue about putting spaces in the path-

name and see how easily you come up with suitably
quirky behaviour. Of course, theoretical analysis
takes hours of intensive work, and often comes to
nothing. There’s a trade-off, but for investigating
possibly subtle interactions with complex software
the predictive power of theoretical analysis surely
pays off in the long run.

But enough of my pleas to the computer security
industry for investing more in studying Windows!
Let us get on with the demonstrations.

Default File Extension? First, remove the file
extension from the registry data. Open the Con-
trol Panel and see that the Test item no longer
shows. Close the Control Panel. Rename test.cpl

to test.dll. Open the Control panel and see that
there’s still no Test item. Evidently, neither .cpl

nor .dll is a default file extension for CPL mod-
ules. Close the Control Panel. Why did I have you
try this? Create path\test itself as any file you like,
even as a directory. Open the Control Panel. Oh,
now it executes test.dll!

Yes, if the pathname in the registry does not have
a file extension, the Control Panel will load and ex-
ecute a CPL module that has .dll appended, as if
.dll were a default file extension—–but only if the
extension-free name also exists as at least some sort
of a file-system object. Isn’t this weird?

Spaces For our second variation, start undo-
ing the first. Close the Control Panel, remove
the subdirectory, and rename the CPL module to
test.cpl. Then, instead of restoring the registry
data to “path\test.cpl” make it “path\test.cpl
rubbish.” Open the Control Panel. Of course, the
Test item does not show. Close the Control Panel
and make a copy of the CPL module as “test.cpl
rubbish.” Open the Control Panel. See first that
the copy named “test.cpl rubbish” gets loaded
and executed. This, of course, is just what we’d
hope. The quirk starts with the next message box.
It shows that test.cpl gets loaded and executed,
too!

Yes, if the registry data contains a space, the
CPL module as registered executes as expected but
then there’s a surprise execution of something else.
The Control Panel finds a new name by truncating
the registered filename—the whole of it, including
the path—at the first space. And, yes, if the result of
the truncation has no file extension, then .dll gets

25unzip pocorgtfo14.pdf CPL/testcpl.zip

41

appended. (Though, no, the extension-free name
doesn’t matter now.)

Please find another Zen-friendly moment for tak-
ing this in. This quirky Wonderland surprise execu-
tion surely counts as a parsing error of some sort. It
means that to fix a case of surprise execution that
Microsoft presented as a parsing error, Microsoft
trusted old code in which a parsing error could cause
surprise execution. So it goes.

Length Finally, play with lengthening the path-
name to something like the usual limit of MAX_PATH
characters. That’s 260, but remember that it in-
cludes a terminating null. Close the Control Panel.
Make a copy of test.cpl with some long name and
edit the registry data to match the copy that has
this long name. Open the Control Panel. Repeat
until bored. Perhaps start with the 259 characters
of

1 c : \ temp\ c p l t e s t \1123456789 abcdef2123456789
abcdef3123456789abcdef4123456789abcdef . . . f

3 123456789 abcde . cp l

and work your way down—–or start with

1 c : \ temp\ c p l t e s t \ t e s t . cp l 9 abcdef2123456789
abcdef3123456789abcdef4123456789abcdef . . . f

3 123456789 abcdef012

if you want to stay with the curious configura-
tion where one CPL module is registered but two get
executed. (My naming convention is that after the
16 characters of my chosen path, the filename part
has each character show its 0-based index into the
pathname, modulo 16, except that where the index
is a multiple of 16 the character shows how many
multiples. The ellipses each hide 160 characters.)
Either way, for any version of Windows from the last
decade, the Test item does not show, and the CPL
module does not get loaded and executed—until you
bring the pathname down to 250 characters, not in-
cluding the terminating null.

This limit is deliberate. Starting with Windows
XP and its support for Side-By-Side (SxS) assem-
blies, the Control Panel anticipates loading CPL
modules in activation contexts. There are vari-
ous ways that a CPL module can affect the choice
of activation context. For one, the Control Panel
looks for a file that has the same name as the CPL
module, but with “.manifest” appended. Though
this manifest need not exist, the Control Panel has,
since Windows XP SP2, rejected any CPL module
whose pathname is already too long for the mani-
fest’s name to fit the usual MAX_PATH limit. (The
early builds of Windows XP just append without
checking. That they got away with it is a classic
example of a buffer overflow that turns out to be
harmless.)

Key: HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Control Panel\CPLs

Value: anything, e.g., Test
Type: REG_SZ or REG_EXPAND_SZ
Data: path\test.cpl

Figure 9. CPL Module Registry Entry

42

The Exec Name

As we move toward the specifics of loading and call-
ing a CPL module to ask which icon to show, it’s as
well to observe that this lower-level code for load-
ing and calling CPL modules in general is not just
quirky in some of its behaviors, but also in how it
gets its inputs. Reasons for that go back to an-
cient times and persist, so that CPL modules can
be loaded and executed via the RUNDLL32.EXE pro-
gram, the lower-level code for loading and calling
CPL modules that receives its specification of a Con-
trol Panel item as text–—as if it were supplied on a
command line. For this purpose, the text appears
to be known in Microsoft’s source code as the item’s
exec name. It is composed as the module’s path-
name between double-quotes, then a comma, and
then the item’s display name.

Perhaps this comes from wanting to reuse as
much legacy code as possible. The loading and ex-
ecuting of a CPL module specifically to ask which
icon to show for one of that module’s Control Panel
items—even though this task is no longer ever done
on its own from any command line—is handled as a
special case with a slightly modified exec name: the
module’s pathname, a comma, a (signed) decimal
representation of the icon index, another comma,
and the item’s display name.26

The absence of double-quotes around the mod-
ule’s pathname in this modified exec name is much
of the reason for the quirky behaviour demonstrated
above when the pathname contains a space. It goes
further than that, however.

I ask you again to take another Wonderland Zen
moment of reflection. The GetUIObjectOf method
receives the module’s pathname, the item’s icon
index, and the item’s display name—among other
things—in a binary package. It parses them out of
the package and then into this modified exec name,
i.e., as text, which the deeper implementation will
have to parse. What could go wrong with that?

The immediate answer is that the modified exec
name is composed in a buffer that allows for 0x022A
characters, but, until Microsoft’s second fix, only
MAX_PATH characters are allowed for the copy that’s
kept for the object that gets created to represent
the Control Panel item for the purpose of provid-
ing an IExtractIcon interface. This mismatch of
allowances is ancient. Worse, even though Windows
Server 2003 (chronologically, but Windows XP SP2,

by the version numbers) had seen Microsoft intro-
duce the mostly welcome StringCb and StringCch

families of helper routines for programmers to work
with strings more securely, this particular copying
of a string was not converted to these functions un-
til Windows Vista—and even then the programmer
could blow away much of its point by not checking
it for failure.

If the CPL module’s pathname is just long
enough, the saved exec name gets truncated so that
it keeps the comma but loses at least some of the
icon index. When the GetIconLocation method
parses the (truncated) exec name, it sees the comma
and infers that an icon index is present. If enough
of the icon index is retained such that digits are
present, including after a negative sign, then the
only consequence is that the inferred icon index is
numerically wrong. If the CPL module’s pathname
is exactly the “right” length, meaning 257 or 258
characters (not including a terminating null), then
the icon index looks to be empty or to be just a
negative sign, and is interpreted as zero.27

It’s time for another of those Wonderland mo-
ments. To defeat a spoof that Microsoft misrep-
resented as a parsing error, Microsoft dealt with a
suspect zero by proceeding as if the zero had been
-1, but then an actual parsing error in the deeper
implementation could turn the -1 back to zero!

The practical trouble with this parsing error,
which is perhaps the reason it wasn’t noticed at the
time, is that it kicks in only if the CPL module’s
pathname is longer than the 250-character maxi-
mum that we demonstrated earlier. An item ID that
could trigger this parsing error isn’t ever going to be
created by the Control Panel. It can’t, for instance,
get fed to GetUIObjectOf from a shortcut file that
we created simply by a Ctrl-Shift drag. If we want
to demonstrate this parsing error without resorting
to a Windows version that’s so old that the Control
Panel doesn’t have the 250-character limit, the item
ID would need to be faked. We need a specially
crafted shortcut file after all.

Shortcut Crafting Making an uncrafted short-
cut file is straightforward if you’re already familiar
with programming the Windows shell. The shell
provides a creatable COM object for the job, with
interfaces whose methods allow for specifying what
the shortcut will be a shortcut to, and for saving

26At this point, you might feel exactly how Alice felt in Wonderland. The Cheshire Cat would approve. —PML
27And now we don’t even need to ask what the Caterpillar was smoking. —PML

43

the shortcut as a .LNK file. The target, being an
arbitrary item in the shell namespace, is specified
as a sequence of shell item identifiers that generalise
the pathname of a file-system object. To represent
a Control Panel item, we just need to start with
a shell item identifier for the Control Panel itself,
and append the item ID such as we’ve been talk-
ing about all along. Where crafting comes into it is
that we’ve donned hacker hats, so that the item ID
we append for the Control Panel item is confected.
But enough about the mechanism! You can read the
source code.28

To build, use the Windows Driver Kit (WDK)
for Windows 7. The 32-bit binary suffices for 64-
bit Windows. You may as well build for the oldest
supported version, which is Windows XP, but the
program does nothing that shouldn’t work even for
Windows 95.

To test, open a Command Prompt in some
directory, e.g., path, where you have a copy of
test.cpl from the earlier demonstrations of gen-
eral behaviour. Again, for simplicity and definite-
ness, start with a path that contains no spaces and
is not ridiculously long. To craft a shortcut to what
might be a Control Panel item named Test that’s
hosted by this test.cpl, run the command

1 l i n k c p l /module : path\ t e s t . cp l / i con : 0 /name :
Test t e s t . lnk

With the Windows Explorer, browse to this same
directory. If running on an earlier version than Win-
dows 7 SP1 without Microsoft’s first fix, you should
see the CPL module’s message box even without
having registered test.cpl for execution. For any
later Windows version or if the first fix is applied,
browsing the folder executes the CPL module only
if it’s been registered.

For full confidence in this base state, re-craft the
shortcut but specify any number other than zero
for the icon index. Confirm that browsing does not
cause any loading and executing unless the short-
cut records that the CPL module is of the sort that
always wants to be asked which icon to show.

Very Long Names The point to crafting the
shortcut is that we can easily use it to deliver to
GetUIObjectOf an item ID that we specify in detail.
Do note, however, that the shortcut is only conve-
nient, not necessary. We could instead have a pro-

gram confect the item ID, feed it to GetUIObjectOf

by calling directly, and then call GetIconLocation
and report the result.

Either way, the details that we want to spec-
ify are the module’s pathname and the icon index.
We’ll provide pathnames that are longer than the
Control Panel accepts when enumerating Control
Panel items, but which nonetheless result in the ex-
pected loading and execution when the icon index is
zero. Then, we’ll demonstrate that when the path-
name is just the right length, as predicted above,
the loading and execution happen even when the
icon index is non-zero. The assumption throughout
is that the Windows you try this on does not have
Microsoft’s second fix.

We know anyway not to bother with the very
longest possible name (except as a control case),
since the truncation loses the comma from the exec
name such that it will seem to have no icon index
at all. Instead make a copy of test.cpl that has a
258-character name such as

1 c : \ temp\ c p l t e s t \1123456789 abcdef2123456789
abcdef3123456789abcdef4123456789abcdef . . . f

3 123456789 abcd . cp l

Craft a /icon:0 shortcut that has this same long
name for the module’s pathname. If testing on a
Windows that has the first fix, also edit this long
name into the registry. Browse the directory that
contains the shortcut—and perhaps be a little dis-
appointed that the CPL module does not get loaded
and executed.

But now remember that delicious quirk in which
a space in the module’s pathname, within the 250-
character limit, induces the loading and executing of
two CPL modules, first as given and then as trun-
cated at the first space. Copy test.cpl as

1 c : \ temp\ c p l t e s t \ t e s t . cp l 9 abcdef2123456789
abcdef3123456789abcdef4123456789abcdef . . . f

3 123456789 abcdef01

Re-craft the shortcut by giving this name to the
/module switch in quotes. Update the registration
if appropriate. Still, the copy with the long name
doesn’t get loaded and executed—–but, as you might
have suspected, the copy we’ve left as test.cpl

does! Indeed, because the copy with the long name

28unzip pocorgtfo14.pdf CPL/linkcplsrc.zip CPL/linkscplbin.zip

44

doesn’t have to execute for this purpose, and be-
cause its Control Panel item won’t show in the Con-
trol Panel, it doesn’t need to be a copy. Even an
empty file suffices!

Edge Cases By repeating with ever shorter path-
names, but also trying non-zero values for the icon
index, we can now demonstrate that CVE-2010-2568
has its own edge cases, as predicted from theoretical
analysis. The general case has zero for the icon in-
dex. The edge cases are that if the pathname is very
long but contains a space in the first 250 characters,
then the icon index need not be zero. The following
table summarises the behaviour on a Windows that
does not have CVE-2010-2568 fixed.

The length does not include a terminating null.
The icon index is assumed to be syntactically valid:
negative means 0xFF000000 to 0xFFFFFFFF in-
clusive; positive means 0x00000001 to 0x00FFFFFF
inclusive. Execution is of the CPL module that is
named by truncating the very long pathname at its
first space. (Also, if this has no file extension, ap-
pending .dll as a default.)

Length Icon Index Exec? Remarks
259 Any No

258
Zero Yes
Non-Zero Yes Edge Case

257
Zero Yes
Negative Yes Edge Case
Positive No

Less
Zero Yes If Registered29

Non-Zero No

CVE-2015-0096

The point to Microsoft’s first fix of CVE-2010-2568
was to avoid execution unless the pathname in the
item ID was that of a registered CPL module. But
the decision to test the registration only if the icon
index in the item ID was zero meant that the two
edge cases were completely unaffected. Worse, when
the icon index in the item ID was zero, changing the
zero to −1 would turn the suspect item ID not into
something harmless but into an edge case. Either
way, the pathnames had to be so long that the edge
cases turned into surprise execution only because of

a quirk even deeper into the code such that the CPL
module executes needed not to be the one specified.

CVE-2015-0096 appeared to be the first public
recognition of this, not that you would ever guess it
from the formal description or from anything that I
have yet found that Microsoft has published about
it. From Dave Weinstein’s explanation, it appears
that the incompleteness of the first fix was found by
following the mind of an attacker frustrated by the
first fix and seeking a way around it.

The second fix plausibly does end the exploitabil-
ity, at least for the purpose of using shortcuts to
Control Panel items as a way to spread a worm.
The edge cases exist only because of a parsing error
caused by a buffer overflow. The second fix increases
the size of the destination buffer so that it does not
overflow when receiving its copy of the exec name.
For good measure, it also tracks the icon index sep-
arately, so that it anyway does not get parsed from
that copy.

But the CPL module’s filename continues to be
parsed from that copy. If it contains a space, then
the Control Panel still can execute two CPL mod-
ules, one as given and one whose name is obtained
by truncating at the first space. Only because of this
were the edge cases ever exploitable. Yet even as late
as the original release of Windows 10—which is as
far as I have yet caught up to for my studies—it re-
mains true that if you can register “path\test.cpl
rubbish” or “path\space test.cpl” for execution
as a CPL module, then you can get path\test.cpl
or path\space.dll loaded and executed by sur-
prise. Is anyone actually happy about that?

Many ways seem to lead into this Wonderland,
but is there a way out?

29Since the first fix, this executes only if registered.

45

14:09 Postscript that shows its own MD5

by Gregor “Greg” Kopf

Introduction

Playing with file formats to produce unexpected re-
sults has been a hacker past-time for quite a while.
These odd results often include self-referencing code
or data structures, such as zip bombs, self-hosting
compilers, or programs that print their own source
code–called quines. Quines are often posed as brain
teasers for people learning new programming lan-
guages.

In the light of recent attacks on the crypto-
graphic hash functions MD5 and SHA-1, it is natural
to ask a related question: Is there a program that
prints out its own MD5 or SHA-1 hash? A similar
question has been posed on Twitter by Melissa.30

Melissa
@0xabad1dea

Trick I want to see: a document in a

conventional format (such as PDF) which

mentions its own MD5 or SHA1 hash in the text

and is right

8:55 AM 9 Aug 2013

The original tweet is from 2013. It appears that
since then nobody provided a convincing solution
because in March 2017 Ange Albertini declared that
the challenge was still open. This brought the prob-
lem to my attention—the perfect little Sunday morn-
ing challenge.

A Bit of Context

Melissa’s challenge asks whether there is a document
in a conventional format that prints its own MD5
or SHA-1 hash. At the first glance this question
might appear to be a bit stronger than the question
for a program that prints its own MD5 or SHA-1
hash. However, it is well known that several doc-
ument formats actually allow for Turing-complete
computations. Proving the Turing-completeness of
exotic programming languages (such as Postscript
files or the x86 mov instruction) is in fact another
area that appears to attract the attention of sev-
eral hackers. Considering that Postscript is Turing-

complete, could build a program that prints out its
own MD5 or SHA-1 hash?

The problem of building such a program can be
viewed from (at least) two different angles. One
could view this hypothetical program as a modified
quine: instead of printing its own source code, the
program prints the hash of its own source code. If
you are familiar with how quines can be generated,
you can easily see that the following program is in-
deed a solution to the question:

1 a=[’ from hash l i b import ∗ ’ , ’ n=chr (10) ’ ,
’ p r i n t md5(" a="+s t r (a)

3 +n+n . j o i n (a)+n) . hexd ige s t () ’]
from hash l i b import ∗

5 n=chr (10)
print md5("a="+str (a)+n+n . j o i n (a)+n) .

hexd ige s t ()

While this method can likely be applied to
Postscript documents as well, I did not like it very
much. Computing the MD5 hash of the program at
runtime felt like cheating.

The desired file is a modified fixpoint of the used
hash function, in the same sense that this program
is a modified quine. A plain fixpoint would be a
value x where x = h(x). Here, h denotes the hash
function. This problem has not yet, so far as I know,
been solved constructively. (Statistics reveals that
such fixpoints exist with a certain probability, how-
ever.)

30https://twitter.com/0xabad1dea/status/365863999520251906

46

Fortunately, we are looking for something a lit-
tle easier. We are looking for an x that satis-
fies x = encode(h(x)) for some encoding function
encode(). I decided to chase this idea: constructing
such a value x, using MD5 as hash function h() and
a function that builds a Postscript file as encode().

The Basics

When Wang et al., broke MD5 in 2005, there was
considerable interest in what one could do with a
chosen-prefix MD5 collision attack. Sotirov et al.,
have demonstrated in 2008 that one could exploit
Wang’s work in order to build a rogue X.509 CA
certificate—the final nail in MD5’s coffin.

But there is another—even simpler—trick one can
perform given the ability to create colliding MD5 in-
puts. One can create two executables with the same
MD5 hash but with different semantics. The general
idea is to generate two colliding MD5 inputs a and
b. We can then write a program like the following.

print ’Hi , my message i s : ’
2 i f a == b :

print " He l lo World"
4 else :

print "Oh noez , I ’ ve been hacked ! ! 1 "

And another program like this:

1 print ’Hi , my message i s : ’
i f b == b :

3 print " He l lo World"
else :

5 print "Oh noez , I ’ ve been hacked ! ! 1 "

Both programs will have the same MD5 hash; in
the second program, we only replaced a with b.

But why does this work? There are two things
one needs to pay attention to. Firstly, we have to
understand that while the inputs a and b might col-
lide under MD5, the strings "foo"+a and "foo"+b

may not necessarily collide. Fortunately, Wang’s at-
tack allows us to rectify this. The attack does not
only generate colliding MD5 inputs, it also allows to
generate collisions that start with an arbitrary com-
mon prefix. (This is what the term chosen-prefix
is about.) This is precisely what is required, and
we can now generate MD5 inputs that collide under
MD5 and share the following prefix.

1 print ’Hi , my message i s : ’
i f

Secondly, we also need to keep in mind that in
our programs we have appended some content af-
ter the colliding data. Fortunately, as MD5 is a
Merkle–Damg̊ard hash, given two colliding inputs a

and b, the hashes MD5(a+ x) and MD5(b+ x) will
also collide for all strings x. This property allows
us to append arbitrary content after the colliding
blocks.

47

Constructing the Target

Using the above technique allows us to encode a sin-
gle bit of information into a program without chang-
ing the program’s MD5 hash. Can we also encode
more than one bit into such a program? Unsurpris-
ingly, we can!

We start the same way that we have already seen,
by generating two MD5 collisions a and b that share
the following prefix.

print ’Hey , I can encode mu l t ip l e b i t s ! ’
2 r e s u l t = []

i f

This allows us to build two colliding programs
that look like the following. (Exchange a with b to
get the second program.)

1 print ’Hey , I can encode mu l t ip l e b i t s ! ’
r e s u l t = []

3 i f a == b :
r e s u l t . append (0)

5 else :
r e s u l t . append (1)

And from here, we simply iterate the process,
computing two colliding MD5 inputs c and d that
share this prefix.

print ’Hey , I can encode mu l t ip l e b i t s ! ’
2 r e s u l t = []

i f a == b :
4 r e s u l t . append (0)

else :
6 r e s u l t . append (1)

8 i f

This allows us to build a program with two bits
that might be adjusted without changing the hash.

print ’Hey , I can encode mu l t ip l e b i t s ! ’
2 r e s u l t = []

i f a == b :
4 r e s u l t . append (0)

else :
6 r e s u l t . append (1)

8 i f c == d :
r e s u l t . append (0)

10 else :
r e s u l t . append (1)

We can replace a with b, and we can replace c

with d. In total, this yields four different programs
with the same MD5 hash. If we add a statement like
print result at the end of each program, we have
four programs that output four different bit-strings
but share a common MD5 hash!

How does this enable us to generate a program
that outputs its own MD5 hash? We first generate a
program that we can encode 128 bits into. Knowing
that the MD5 hash of this program will not change
independently from what bits we encode into the
program. Therefore, we simply encode the 128 out-
put bits of MD5 into the program without altering
its hash value. In other words, the program prints
the 128 output bits of its own hash value.

Application to Postscript

This technique can directly be applied to Postscript
documents as Postscript is a simple, stack-based lan-
guage. Please consider the following code snippet.

1 (a)
(b)

3 eq

{
5 1

}{
7 0

} i f e l s e

48

While this may look a bit cryptic, the program
is in fact very simple. It compares the string literal
“a” to the string literal “b”, and if both strings are
equal, it pushes the numeric value 1 to the stack.
Otherwise, it pushes a 0.

This examples highlights the manner in which we
can build a Postscript file that we encode 128 bits
of information into without changing the file’s MD5
hash. The program will push these desired bits to
the stack. We can extend this program with a rou-
tine that pops 128 bits off the stack and encodes
them in hex. To demonstrate the feasibility of this
idea, we can inspect how one nibble of data would
be handled by this routine.

0 eq

2 {
0 eq

4 {
0 eq

6 {
0 eq

8 {
(0)

10 }{
(1)

12 } i f e l s e

}{
14 0 eq

{
16 (2)

}{
18 (3)

} i f e l s e

20 } i f e l s e

}{
22 . . .

show

This code excerpt will pop four bits off the stack.
If all bits are zero, the string literal “0” will be
pushed onto the stack. If the lowest bit is a one and
all other bits are zero, the string literal “1” will be
pushed, etc. The show statement at the end causes
the nibble to be popped off the stack and written to
the current page.

An example of such a Postscript document is
included in the feelies.31 If you want to build
such a document on your own, you could use the
python-md5-collision library32 to build MD5 col-
lisions with chosen prefixes.
$ md5sum poc.ps
768d9d89d2bc825a319eb8962ad30580 poc.ps

Closing Remarks

We have seen two approaches for generating pro-
grams that print out their own hash values. The
quine approach does not require a collision in the
used hash function, however this comes at the cost
of language complexity. In order to build such a
modified quine, the chosen language must allow for
self-referencing code as well as computing the se-
lected hash function.

The fixpoint approach is computationally more
expensive to implement, as several hash collisions
must be computed. However, these hash calcula-
tions can be performed in any programming envi-
ronment. With this approach, the target language
can be comparably simple: it just needs condition-
als, string comparison and some method to output
the result.

31unzip pocorgtfo14.pdf md5.ps
32git clone https://github.com/thereal1024/python-md5-collision

49

14:10 A PDF That Shows Its Own MD5

by Mako

Even though MD5 is quite broken, you might
easily assume that creating a file that contains its
own MD5 is impossible. After all, surely changing
the file would change its MD5? Let’s honor this
publication’s fine history of PDF tricks by creating
a PDF file that displays its own MD5 hash when
viewed.

0
1
2
3
4
5

Each of these nibble elements (pictures, text)
is crafted to collide with the others:
 swapping them preserve the hash.

2

Each hash nibble is a reference to a distinct element:
 their value is stored in specific areas of the file
 where the collisions can be crafted.

1

All displayed nibbles of the hash can be changed
to match the file's hash while keeping the same hash.3

Our tactic will be to make each digit of the MD5
checksum a separate JPEG image, and make the
MD5 hashes of all 16 possible images collide to the
same value. We can then swap out images to display
any combination of digits without affecting the file’s
MD5. This requires 15 collisions per digit, and since
they depend on the MD5 of the preceding part of the
document, we need to do this for each digit, for a to-
tal of 15×32 = 480 collisions. With a few compute-
months of power we could just append chosen-prefix
collisions to whatever images we liked and be done
with it, but that’s too slow. If we could make do
with faster shared-prefix MD5 collisions — for exam-
ple Marc Stevens’ Fastcoll33 — we could be finished
in an hour.

Craft file structure:
each hash nibble is a reference to a specific element
where the collisions will happen.1 Header

Body

1st nibble

2nd nibble

...

Footer

Compute collisions for all 16 values for the 1st nibble
(abusing file formats, based on the current file prefix).2

Do the same for the 2nd nibble...
(the prefix contains the first nibble area now)3

...and so on, for each nibble of the hash
(32 in the case of MD5).X

012

Change all nibbles to match the actual file hash.X+1

references

displayed elements

This adds some restrictions. Everything other
than the pairs of collision blocks must now be the
same. Furthermore, the two versions of the first col-
lision block have a fixed relationship, as shown in
Figure 10.

If we could only get one of those bits to be in the
length field of a JPEG comment marker, we could
take loving inspiration from Ange Albertini’s trick in
the SHAttered attack, colorfully explained by Hec-
tor Martin34 in Figure 11, to display two different
images.

Unfortunately, they’re in the middle of the colli-
sion block, and worse, those message words are being
used to satisfy these constraints on Q[5], Q[12] and
Q[15]:35

Q[5] = 01000ˆ01 11111111 11111111 11ˆˆ10ˆˆ

Q[12] = 0!0....0 ..!..01. ..1...1. 1.......

Q[15] = 1.0....0! 1.......0...

. is don’t-care,
ˆ is same as previous Q,
! is inverted from previous Q.

Hmmm. Q[15] is pretty lightly con-
strained. Maybe we could just set m[14] =
(m[14]&0xff000000)|0x01feff and see what it does
to Q[15]. That’d give a JPEG comment of length
256-383 bytes on one side and 128 bytes longer on
the other, and we can try just generating new sets of
values until they meet the constraints. Luckily this
works often enough to be practical, though there
are probably more elegant approaches.

Now we can start colliding JPEGs! The struc-
ture is quite simple: we begin with an FF D8 start-
of-image marker and the parts that are identical in
all our images, such as the JFIF APP0 segment,
then add a JPEG comment that will end at exactly
byte 56 of our collision block. After padding to a
64-byte block boundary and creating a collision, we
finally have two partial files with identical MD5 val-
ues but different JPEG comment lengths.

From here it’s straight sailing. In the short-
comment version, the next JPEG marker parsed is a

33unzip pocorgtfo14.pdf fastcoll-v1.0.0.5-1.zip
34See https://twitter.com/marcan42/status/835175023425966080
35If these constraints look like voodoo or hoodoo to you, please unzip pocorgtfo14.pdf md5-1block-collision.pdf

stevensthesis.pdf and read Marc Stevens’ papers on how the collisions are formed. Don’t expect to learn all of his magic in
just a weekend. —PML

50

blockb[4] = blocka[4] + (1 << 31);
blockb[11] = blocka[11] + (1 << 15);
blockb[14] = blocka[14] + (1 << 31);

(rest of block is unchanged)

Figure 10. Colliding Block Relationship

$ hexdump -vC shattered-1.pdf $ hexdump -vC shattered-2.pdf
00000000 25 50 44 46 2d 31 2e 33 0a 25 e2 e3 cf d3 0a 0a |%PDF-1.3.%......| 00000000 25 50 44 46 2d 31 2e 33 0a 25 e2 e3 cf d3 0a 0a |%PDF-1.3.%......|
00000010 0a 31 20 30 20 6f 62 6a 0a 3c 3c 2f 57 69 64 74 |.1 0 obj.<</Widt| 00000010 0a 31 20 30 20 6f 62 6a 0a 3c 3c 2f 57 69 64 74 |.1 0 obj.<</Widt|
00000020 68 20 32 20 30 20 52 2f 48 65 69 67 68 74 20 33 |h 2 0 R/Height 3| 00000020 68 20 32 20 30 20 52 2f 48 65 69 67 68 74 20 33 |h 2 0 R/Height 3|
00000030 20 30 20 52 2f 54 79 70 65 20 34 20 30 20 52 2f | 0 R/Type 4 0 R/| 00000030 20 30 20 52 2f 54 79 70 65 20 34 20 30 20 52 2f | 0 R/Type 4 0 R/|
00000040 53 75 62 74 79 70 65 20 35 20 30 20 52 2f 46 69 |Subtype 5 0 R/Fi| 00000040 53 75 62 74 79 70 65 20 35 20 30 20 52 2f 46 69 |Subtype 5 0 R/Fi|
00000050 6c 74 65 72 20 36 20 30 20 52 2f 43 6f 6c 6f 72 |lter 6 0 R/Color| 00000050 6c 74 65 72 20 36 20 30 20 52 2f 43 6f 6c 6f 72 |lter 6 0 R/Color|
00000060 53 70 61 63 65 20 37 20 30 20 52 2f 4c 65 6e 67 |Space 7 0 R/Leng| 00000060 53 70 61 63 65 20 37 20 30 20 52 2f 4c 65 6e 67 |Space 7 0 R/Leng|
00000070 74 68 20 38 20 30 20 52 2f 42 69 74 73 50 65 72 |th 8 0 R/BitsPer| 00000070 74 68 20 38 20 30 20 52 2f 42 69 74 73 50 65 72 |th 8 0 R/BitsPer|
00000080 43 6f 6d 70 6f 6e 65 6e 74 20 38 3e 3e 0a 73 74 |Component 8>>.st| 00000080 43 6f 6d 70 6f 6e 65 6e 74 20 38 3e 3e 0a 73 74 |Component 8>>.st|
00000090 72 65 61 6d 0a ff d8 ff fe 00 24 53 48 41 2d 31 |ream......$SHA-1| 00000090 72 65 61 6d 0a ff d8 ff fe 00 24 53 48 41 2d 31 |ream......$SHA-1|
000000a0 20 69 73 20 64 65 61 64 21 21 21 21 21 85 2f ec | is dead!!!!!./.| 000000a0 20 69 73 20 64 65 61 64 21 21 21 21 21 85 2f ec | is dead!!!!!./.|
000000b0 09 23 39 75 9c 39 b1 a1 c6 3c 4c 97 e1 ff fe 01 |.#9u.9...<L.....| 000000b0 09 23 39 75 9c 39 b1 a1 c6 3c 4c 97 e1 ff fe 01 |.#9u.9...<L.....|
000000c0 73 46 dc 91 66 b6 7e 11 8f 02 9a b6 21 b2 56 0f |sF..f.~.....!.V.| 000000c0 7f 46 dc 93 a6 b6 7e 01 3b 02 9a aa 1d b2 56 0b |.F....~.;.....V.|
000000d0 f9 ca 67 cc a8 c7 f8 5b a8 4c 79 03 0c 2b 3d e2 |..g....[.Ly..+=.| 000000d0 45 ca 67 d6 88 c7 f8 4b 8c 4c 79 1f e0 2b 3d f6 |E.g....K.Ly..+=.|
000000e0 18 f8 6d b3 a9 09 01 d5 df 45 c1 4f 26 fe df b3 |..m......E.O&...| 000000e0 14 f8 6d b1 69 09 01 c5 6b 45 c1 53 0a fe df b7 |..m.i...kE.S....|
000000f0 dc 38 e9 6a c2 2f e7 bd 72 8f 0e 45 bc e0 46 d2 |.8.j./..r..E..F.| 000000f0 60 38 e9 72 72 2f e7 ad 72 8f 0e 49 04 e0 46 c2 |`8.rr/..r..I..F.|
00000100 3c 57 0f eb 14 13 98 bb 55 2e f5 a0 a8 2b e3 31 |<W......U....+.1| 00000100 30 57 0f e9 d4 13 98 ab e1 2e f5 bc 94 2b e3 35 |0W...........+.5|
00000110 fe a4 80 37 b8 b5 d7 1f 0e 33 2e df 93 ac 35 00 |...7.....3....5.| 00000110 42 a4 80 2d 98 b5 d7 0f 2a 33 2e c3 7f ac 35 14 |B..-....*3....5.|
00000120 eb 4d dc 0d ec c1 a8 64 79 0c 78 2c 76 21 56 60 |.M.....dy.x,v!V`| 00000120 e7 4d dc 0f 2c c1 a8 74 cd 0c 78 30 5a 21 56 64 |.M..,..t..x0Z!Vd|
00000130 dd 30 97 91 d0 6b d0 af 3f 98 cd a4 bc 46 29 b1 |.0...k..?....F).| 00000130 61 30 97 89 60 6b d0 bf 3f 98 cd a8 04 46 29 a1 |a0..`k..?....F).|
00000140 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................| 00000140 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00000150 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................| 00000150 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00000160 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................| 00000160 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00000170 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................| 00000170 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00000180 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................| 00000180 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00000190 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................| 00000190 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
000001a0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................| 000001a0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
000001b0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................| 000001b0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
000001c0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................| 000001c0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
000001d0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................| 000001d0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
000001e0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................| 000001e0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
000001f0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................| 000001f0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00000200 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................| 00000200 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00000210 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................| 00000210 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00000220 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................| 00000220 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00000230 00 00 ff fe 00 fc 00 00 00 00 00 00 00 00 ff e0 |................| 00000230 00 00 ff fe 00 fc 00 00 00 00 00 00 00 00 ff e0 |................|
00000240 00 10 4a 46 49 46 00 01 01 01 00 48 00 48 00 00 |..JFIF.....H.H..| 00000240 00 10 4a 46 49 46 00 01 01 01 00 48 00 48 00 00 |..JFIF.....H.H..|
00000250 ff db 00 43 00 01 01 01 01 01 01 01 01 01 01 01 |...C............| 00000250 ff db 00 43 00 01 01 01 01 01 01 01 01 01 01 01 |...C............|
00000260 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 |................| 00000260 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 |................|
00000270 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 |................| 00000270 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 |................|
00000280 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 |................| 00000280 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 |................|
00000290 01 01 01 01 01 ff db 00 43 01 01 01 01 01 01 01 |........C.......| 00000290 01 01 01 01 01 ff db 00 43 01 01 01 01 01 01 01 |........C.......|
000002a0 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 |................| 000002a0 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 |................|
000002b0 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 |................| 000002b0 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 |................|
000002c0 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 |................| 000002c0 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 |................|
000002d0 01 01 01 01 01 01 01 01 01 01 ff c2 00 11 08 02 |................| 000002d0 01 01 01 01 01 01 01 01 01 01 ff c2 00 11 08 02 |................|
000002e0 e4 04 00 03 01 11 00 02 11 01 03 11 01 ff c4 00 |................| 000002e0 e4 04 00 03 01 11 00 02 11 01 03 11 01 ff c4 00 |................|
000002f0 1e 00 01 00 02 03 00 03 01 01 00 00 00 00 00 00 |................| 000002f0 1e 00 01 00 02 03 00 03 01 01 00 00 00 00 00 00 |................|
00000300 00 00 00 07 08 05 06 09 03 04 0a 02 01 ff c4 00 |................| 00000300 00 00 00 07 08 05 06 09 03 04 0a 02 01 ff c4 00 |................|
00000310 1d 01 01 00 01 05 01 01 01 00 00 00 00 00 00 00 |................| 00000310 1d 01 01 00 01 05 01 01 01 00 00 00 00 00 00 00 |................|
00000320 00 00 00 07 03 04 05 06 08 02 09 01 ff fe 00 06 |................| 00000320 00 00 00 07 03 04 05 06 08 02 09 01 ff fe 00 06 |................|
00000330 ff fe 27 f4 ff da 00 0c 03 01 00 02 10 03 10 00 |..'.............| 00000330 ff fe 27 f4 ff da 00 0c 03 01 00 02 10 03 10 00 |..'.............|
00000340 00 01 a1 fa ff 00 d8 c0 00 00 00 00 00 00 00 00 |................| 00000340 00 01 a1 fa ff 00 d8 c0 00 00 00 00 00 00 00 00 |................|

PDF Header

JPEG Start
JPEG Comment

JPEG Comment

Comment length = 0x173

PDF Header

JPEG Start
JPEG Comment

JPEG Comment

Comment length = 0x17F

F
ix

ed
V

a
ri
a
b
le

F
ix

ed
V

a
ri
a
b
le

JPEG Comment

JPEG Comment

Real JPEG data starts much later...

JFIF Header

Quantization table

Quantization table SOF2 header

Huffman tables JPEG Comment

Image data

Collision blocks
This is the only part of the
files which is different

Interleaving
Small comment on the
right hides the header
between the two large
comments on the left

Desync
JPEG parsing gets
out of sync here

CC BY 4.0 Hector Martin 2017

Figure 11. How the SHA-1 collision PDF format trick works

comment skipping past image 0. The long-comment
version instead sees the contents of image 0 followed
by another JPEG comment extending right to the
end of the image, whose size we’ll hardcode for con-
venience. This lets us switch between image 0 and
the other images without changing the MD5, and
we repeat this process for images 1, 2, etc. The fi-
nal image for F is displayed if no other image was
selected, giving a total of fifteen collisions, repeated
for each of the thirty-two digits.

Start Of Image
APP0 segment
Comment declaration
Collision block

File 1
File 2

declares a comment
of variable length

jumps to
byte 56

C>md5sum md5jpg.pdf
71aa13f4b83b424807e3db3260ffe20b *md5jpg.pdf

Since this doesn’t require any clever PDF tricks
the file36 should work for any PDF, and because the
image sizes are fixed in advance it could just have
fixed-size placeholder images that are overwritten by
the collision. Total running time is approximately
an hour.

Alternatively, the PDF format has a feature
called Form XObjects, effectively embedded mini-
PDFs which can be displayed using “/objectname
Do” and can be nested. If we can keep characters
not allowed in a name out of the MD5 collision we
can switch which XObjects get drawn and display
the MD5 as actual text. (Thankfully enough PDFs
draw text one character at a time that everything

36unzip pocorgtfo14.pdf md5jpg.pdf

51

handles this cleanly.) block[15] is as unconstrained
as 14 and can become the Do command, meeting the
(mostly irrelevant) length limit on names in PDFs,
and avoiding most character restrictions on the sec-
ond collision block. This turns out to save quite a
bit of hacking time and runtime.

Of course, then we have to deal with
implementation-specific fixes like disguising the
trailing garbage as a string because PDF.js gives up
otherwise, banning 0x80 and 0xff which PDFium
considers whitespace for some reason, and match-

ing parentheses to properly terminate the dummy
strings and keep Adobe Reader happy — but not
counting escaped parentheses, or we’ll add too many
closing parentheses and break PDF.js again.

That’s a lot of extra effort just to make copy-
and-paste and pdftotext work, with no guarantee
future software won’t break it. It works though.37

$ pdftotext -q md5text.pdf -
66DA5E07C0FD4C921679A65931FF8393

$ md5sum md5text.pdf
66da5e07c0fd4c921679a65931ff8393 md5text.pdf

– — — – — — — — – — – — — — – — – — — – — – – — – — — —

How we put the MD5 on the Front Cover

a short addendum by Philippe Teuwen

On page 56, you’ll see that this issue is a NES ROM polyglot that, when run, prints its own MD5
checksum. It would have been be a pity to not take advantage of the trick presented by Mako to get this
very issue displaying the same MD5 on its cover page.

This required some productization of Mako’s PoC, moving from a stand-alone Python script that creates
a PDF from scratch to something that can be integrated with our existing LATEX toolchain.

PdfTEX provides \pdfximage as a mechanism for embedding graphic objects, which, combined with
\immediate, allows us to inject the sixteen JPEG tiles at the beginning of the PDF, right after the pseudo
object containing the bulk of the NES ROM. This mechanism is accessed by means of \pdflastximage and
\pdfrefximage wherever we want to use the injected tiles:

\immediate\pdfximage width 4.8pt {supertile.jpg}

\edef\mdfivetileAA{\kern 1pt \pdfrefximage\the\pdflastximage}

\immediate\pdfximage width 4.8pt {supertile.jpg}

\edef\mdfivetileAB{\kern 1pt \pdfrefximage\the\pdflastximage}

...

\edef\mdfive{\mdfivetileAA{}\mdfivetileAB{}...}

New tiles have been created to mimic the default LATEX monospace font under the constraint that they,
with the extra colliding blocks, can fit under a single JPEG comment, i.e. a total size fitting in a 16-bit word
and in fine an average of 3,500 bytes per tile. Alternatively, it would have been possible to include higher
resolution tiles, at the cost of crafting chained comment blocks.

To get both NES and title page MD5 right, the operations have to be properly interleaved: compile
LATEX sources with the \pdfximage objects; integrate the ZIP; insert a first PDF object with the NES
ROM; insert the ROM header in front of the PDF header; compute the collisions for the ROM; insert a first
set of collisions in the ROM; compute the collisions for the PDF/JPEG tiles; insert a first set of collisions
in the PDF/JPEG tiles; compute the complete file MD5; swap collisions in the ROM; swap collisions in the
PDF/JPEG tiles.

As we like to see the correct MD5 while typesetting without having to recompute the collisions system-
atically, we use two caches of the collisions that need to be renewed only if the MD5 of the prefixes change.
With a little luck, that’s only when the NES ROM or the JPEG tiles are modified.

Finally, we manually backport the collisions displaying the computed MD5 into the monoglot and inani-
mate PDF version of the issue provided to the print shop.

37unzip pocorgtfo14.pdf md5text.pdf

52

14:11 This GIF shows its own MD5!

by Kristoffer “spq” Janke

The recent successful attack on the SHA-1 hash
algorithm38 has led to a resurgence of interest in
hash collisions and their consequences.

A particularly well-broken hash algorithm is
MD5, which allows for a myriad of ways to play with
it. Here, we demonstrate how to assemble an ani-
mated GIF image that displays its own MD5 hash.39

$ md5sum md5.gif
f5ca4f935d44b85c431a8bf788c0eaca md5.gif

The GIF89a file format

A GIF89a file consists of concatenated blocks. A
parser can read these blocks from the file in a serial
fashion without needing to keep state.

A GIF file is made up of three parts.

Header Signature, Version and basic info like the
Canvas Size and (optional) Color Map.

Body Image, Comment, Text and Extension
blocks, in any order.

Trailer The byte 0x3b.

Of particular interest to us is the format of
comment blocks. They begin with the two bytes
0x21 0xfe, followed by any number of comment
chunks. Every chunk consists of one length byte
and <length> bytes of arbitrary data. The end of
the comment block is marked with a chunk having
zero length.

This means that, by controlling the length
bytes, we can make the parser skip any number of
non-displayable bytes in comment chunks. These
skipped bytes, of course, still affect the file’s MD5
hash. So two GIF files can show different content,
while their skipped bytes are manipulated to make

them have the same MD5 hash values. With some
careful stitching, here we’ll build just such files—
MD5 GIF collision pairs.

21 FE xx 00
extension introducer

comment label
(comment extension)

length

data

block terminator

MD5 collisions

For MD5, appending the same data to both collid-
ing files will still produce the same hash value. The
same is true for appending another collision pair. So
we can have four different files all having the same
MD5 hash with this method.

Or, instead of producing multiple files, we can
produce just one file but later change one of the col-
lisions in the produced file. This is the technique
we’ll use here.

Fastcoll is a MD5 collision generator, created
by Marc Stevens.40 From any input file, it gener-
ates two different output files, both having the same
MD5 hash.

These output files consist of the 64-byte aligned,
zero-padded input file, followed by 128 bytes of col-
lision data generated by Fastcoll. Every byte from
the generated collision data of both files appears to
be random. Comparing these last 128 bytes in both
output files, we can see that only nine bytes differ.
These bytes can be found at indices 19, 45, 46, 59,
83, 109, 110 and 123. While the bytes at 46 and
110 do not show any pattern, the other bytes differ
only and exactly in their most significant bit. This
can be used to construct GIF comment chunks of
different sizes.

Showing two different images

The GIF comment block format and the collisions
generated by Fastcoll allow for the creation of two
GIF files that have the same MD5 hash, but are
interpreted differently.

By constructing the GIF such that one of the
differing bytes in the collision data is interpreted as
the length of a comment chunk, the interpretation

38unzip pocorgtfo14.pdf shattered.pdf
39unzip pocorgtfo14.pdf md5.gif
40unzip pocorgtfo14.pdf fastcoll-v1.0.0.5-1.zip

53

00: .G .I .F .8 .9 .a 03 00 01 00 A1 00 00 FF 00 00

10: 00 FF 00 00 00 FF FF FF FF 2C 00 00 00 00 03 00

20: 01 00 00 02 02 44 54 00 3B

Header
Fields Values

Image

descriptor

 0 1 2 3 4 5 6 7 8 9 A B C D E F

minimum bits 2

per LZW code

block size 2

block data 0101 010 001 000 100

 end #2 #1 #0 start

block end 0

Trailer

separator 2C

width height 3 1

signature "GIF"

version "89a"

width 3

height 1

flags A1 (01 010 0 001)

 GCT true

 bpp 2+1

 GCT size 2^(1+1)

Global Color Table

 FF 00 00 00 FF 00

 00 00 FF FF FF FF

trailer 3B

Local screen

descriptor

of the remaining file will be different across the two
colliding files.

Here, we chose the last differing byte at position
123. Due to the most significant bit having been
flipped between the two collisions, the byte’s value
differs by 128. In order to align this byte to the
Length byte of comment chunk #2, the previous
comment chunk #1 needs to contain the first 123
bytes of the collision data. As the collision is 64-
byte aligned, the comment chunk #1 should con-
tain some padding bytes. We’ll refer to these two
colliding blocks as (X) and (Y).

One limitation arises when the value of the byte
controlling the length of #2 is smaller than 4. The
reason for this limitation is that the comment chunk
#2 needs to contain at least the remaining collision
data (four bytes) in both files. When this require-
ment is not met, a new collision needs to be gener-
ated.

We now have two files with different-sized com-
ment chunks, but the same MD5 hash. We can use
this in one of the collisions by ending the comment
block and starting an image block. The image block
is followed by another comment block, which is sized
such that it skips the remaining bytes of the dif-
ference to 128 and both collisions are aligned from
there.

54

The diagram to the right shows the contents of
the GIF file, which is interpreted differently depend-
ing upon which of the colliding blocks is found at
Point F.

The file with the collision block X will have the
body blocks B, I and N interpreted, while the file
with Y will only have B and N interpreted, with
I skipped over as part of a comment. In order to
yield two GIFs with completely different images, one
could use the blocks B and N for the two images and
one or more dummy image with very high animation
delay in block I. The result is a pair of animated GIF
files, both having the desired images as first and last
frames, but only the variant with X would have a
delay of multiple minutes between the two frames.

$ md5sum md5_avp_loop.gif
8895af74c2b5478c547cfb85f7475f0b md5_avp_loop.gif

header
common image data
comment block start
 comment chunk #1
 64 bytes align.
 collision block
 alignment
 comment chunk end
file 1 image data
comment block start
 comment chunk
 128 bytes align.
 comment chunk end
common image data
trailer

File 1
(X) File 2 (Y)

declares comment chunk #2
(length = byte 123)
highest bit flipped

12
8

b
y
te

s

(A)
(B)
(C)
(D)
(E)
(F)
(G)
(H)
(I)
(J)
(K)
(L)
(M)
(N)
(O)

Showing the MD5 hash

For my PoC, I decided to use 7-segment optics. For
displaying the MD5 hash, I need 32 digits, each hav-
ing seven segments. The background image with all
224 (32 × 7) segments visible is put into block (B),
block (N) can be left empty. We repeat the blocks
(D). . . (L) for every single segment and put an im-
age masking that segment into block (I). Generating
all 224 collisions required thirty minutes on my PC.
When the file is completely generated, we calculate
its MD5 hash. This will be the final hash, which the
GIF file itself should show.

Every masking image will only be shown when
the corresponding collision block is (X), otherwise a
parser will only see comment chunks. We can switch
between collision blocks (X) and (Y) for every image
masking one of the segments. This switch will not
change the MD5 hash value of the file but it allows
us to control what is displayed. Once we have the fi-
nal hash value, we choose the right collision for each
segment and replace it in the file.41

That’s it!42 :)

41unzip pocorgtfo14.pdf md5_avp_loop.gif
42Between this article’s writing and publication, a friendly neighbor Rogdham created his own PoC with detailed write-up and

script, which are available at http://www.rogdham.net/2017/03/12/gif-md5-hashquine.en and in this issue’s ZIP contents.

55

14:12 This PDF is an NES ROM that prints its own MD5 hash!

by Evan Sultanik and Evan Teran

This PDF—in addition to being a ZIP, which is
at this point de rigueur—is also a Nintendo Enter-
tainment System (NES) ROM that prints out the
PDF’s MD5 hash. In other words, it is a hash quine.
The following describes how we did it.

First, we’re going to give a quick primer on the
NES’s hardware architecture, which is necessary to
understand the iNES file format, which is ubiquitous
for storing ROMs. We then describe the PDF/iNES
polyglot, followed by how we achieved the MD5
quine.

NES Hardware and ROMs

NES cartridges have two primary ROM chips: the
PRG and CHR. That’s one of the reasons why a
special file format (e.g., iNES) is necessary to store
ROMS: Cartridges don’t have a single, contiguous
ROM.

The PRG ROM contains the actual executable
code of the game. It will typically be loaded into
the addresses from 0x8000–0xFFFF of the NES.

We have code, but do we have graphics? That’s
what the CHR ROM is for!43 The Picture Process-

ing Unit (PPU) is what renders the graphics of the
NES; it will have either CHR ROM or CHR RAM

attached to it. (Note that the PPU has its own ad-
dress space separate from the CPU.)

Nintendo was clever. Very clever. They knew
that the NES console had hardware limitations that
developers would inevitably run up against, e.g., the
maximum 32 KiB of address space dedicated to the
PRG ROM. They allowed cartridges to have cus-
tom chips that are able to intercept memory reads
(and writes!) and have logic which can effect change
based on them. These chips are called mappers.
That’s essentially how the Game Genie works: it
is a mapper that sits between the cartridge and the
console.

The most basic capability of a mapper is to af-
fect is paging. That’s right, around the same time
that Intel was releasing the i386, the NES supported
basic paging. One common way that this works is
that the ROM would detect a write to a ROM at
certain addresses, triggering the mapper to switch
which pages of ROM were visible where. For exam-
ple, a cartridge with a NES-UNROM mapper chip
would interpret a write of 0x04 to 0x8000 as a com-
mand to place the fourth 16 KiB page at address
0x8000–0xBFFF. PRG ROM remapping is just the
tip of the iceberg. Mapper hardware grew more and
more complex over the years as NES games contin-
ued to push the limits of the system.

Mappers are another reason why a ROM format
like iNES is required, since there were hundreds of
different mapper chips, some specific to individual
games. This also makes building an NES emulator
very challenging, because each individual mapper
chip must be emulated.

The iNES File Format

The de facto standard for storing NES ROMs is the
“iNES format,” named after the file format popular-
ized by an early NES emulator by Marat Fayzullin
named iNES. While there have been competing file
formats over the years such as the “Universal NES
Interchange Format” (UNIF), virtually all ROMs
you will encounter in the wild will be an iNES file.

It is worth noting that there is a successor to the
iNES file format called “NES 2.0.” It is backwards
compatible with iNES, and adds a few extra types

43Or sometimes CHR RAM, as some games procedurally generate their graphics data!

56

57

of information, but is not different enough to require
discussion for the purpose of creating polyglots. So
let’s take a look at this format and see where we can
place our PDF header safely.

Here is the file format of iNES:

Header
16 Bytes

Trainer (Optional)
0 or 512 Bytes

PRG ROM
x× 16 KiB

CHR ROM (Optional)
0 or y × 8 KiB

So, what is this strange beast that is a “Trainer”?
The trainer section is not something that most
ROMs need at all in modern emulators, but any
iNES ROM is allowed to have one. Essentially, the
trainer is a 512 byte block of code that the emu-
lator will load at memory address 0x7000–0x71FF.
Trainers were used by ROM dumpers to store patch
code to make it easier to translate commands from
an unsupported mapper to one that was supported.

Here is the format of the iNES header:

‘N’ ‘E’ ‘S’ 1A 02 01 04 00 00 00 00 . . .

iNES Magic x

(PRG)

y

(CHR)

Flags

RAM
Size

Zeros

The third least significant bit of the first flag byte
(offset 6) controls whether a trainer section exists.
That is why we have set it to 04.

PDF/iNES Polyglot

As you might have already guessed, the trainer is
the perfect place to put our PDF header, since it
starts at offset 16 of the iNES file and 512 bytes is
more than enough for our PDF header. Ange Alber-
tini first described this approach in PoC‖GTFO 7:6.
We can then create a PDF object to encapsulate the
remainder of the ROM. Since PDF readers ignore
everything that comes before the PDF header, the
first 16 bytes of the iNES header that come before
the Trainer are ignored.

Emulators don’t care about data after the ROM
data. In fact, you will often find iNES ROMs in
the wild that have a URL appended to the end of

the file. This causes no harm at all since an iNES
file loader only needs to consider the trainer and
ROM portions described by the header. Everything
afterward—in our case, the remainder of the PDF—
is ignored.

So, is it safe to put a PDF header into the
trainer? No game which doesn’t currently have a
trainer will do anything which interacts with code
loaded at address 0x7000–0x71FF, so they won’t
care at all what happens to be there. We had to
create our own custom NES ROM to generate the
MD5 quine anyway, so we had the control to ensure
that the trainer memory was not used.

We fill the trainer with our standard PDF
header, containing a PDF object stream to
encapsulate the remainder of the NES ROM:

%PDF-1.5

%<D0><D4><C5><D8>

9999 0 obj

<<

/Length number of bytes remaining in the ROM

>>

stream

zeros for the remainder of the 512 Trainer bytes

the remainder of the iNES ROM

endstream

endobj

the remainder of the PDF

NES MD5 Quine

The next issue is getting the ROM to display its own
MD5 hash. We used a technique similar to Greg
Kopf’s method for a PostScript MD5 quine from ar-
ticle 14:09 up on page 46, however, we were severely
restricted by the NES’s memory limitations.

In the PostScript MD5 quine PoC, each bit of
the MD5 hash was encoded as a two-block MD5
collision that was compared against a copy of it-
self. That meant that each of the 128 bits of the
MD5 hash required four 64 byte MD5 blocks, or
32,768 bytes. That’s the size of an entire ROM of
an NROM-256 cartridge!44 It’s twice the amount
of ROM that Donkey Kong, Duck Hunt, and Excite
Bike required.

We wanted to avoid relying on a mapper. So in
order to shrink the hash collision encoding to fit on
an NROM-256 cartridge, we only encode one colli-
sion (two 64 byte blocks) per MD5 bit. That re-
quires only 16,384 bytes. However, that doesn’t al-

44NROM-256 is a chip that provides the maximum amount of PRG ROM without using a mapper.

58

low for the comparison trick that Greg Kopf used in
the PostScript quine. One option would be to add a
lookup table after the collisions: For each hash col-
lision, encode a diff between the two collided blocks,
specifying which block represents “0” and which rep-
resents “1”. A lookup table would only require an
additional 256 bytes (two bytes per MD5 bit). An-
other option which uses even less space is to take
advantage of the fact that Marc Stevens’ Fastcoll45

MD5 collision algorithm produces certain bits that
always differ between the two collided blocks, as was
described by Kristoffer Janke in article 14:11. So,
we can check that bit and use it to determine par-
ity. Either way, after the final PDF is generated and
we know its final MD5 hash, we can then swap out
each of the collided blocks in the NES ROM to pro-
duce the desired bit sequence, all without altering
the overall MD5 hash.

This technique requires at most 16,640 bytes of
the ROM. However, the MD5 encoding needs to
start at the beginning of an MD5 block for the col-
lision to work well (i.e., it needs to start an address

that is a multiple of 64 bytes). That means we
can’t put it at the very end of the PRG ROM, be-
cause the last six bytes of that ROM are reserved for
the “VECTORS” segment. The NES’s CPU expects
those six bytes to contain pointers to NMI, reset,
and IRQ/BRK interrupt handlers. Therefore, we
need to shift the start of the encoding a bit earlier to
leave room. In fact, it is to our advantage to have the
MD5 encoding occur as early as possible—having as
much of our code occur after it as possible—because
any changes that occur after the 16,640 bytes of
MD5 encoding will not require recomputing the
hash collisions. Therefore, we chose to store it start-
ing at memory offset 0x9F70, which corresponds to
byte 0x9F70− 0x8000 = 0x1F70 in the PRG ROM,
which corresponds to byte 16 + 512 + 0x1F70 =
0x2180 within this PDF. Feel free to take a gander!

The code in the NES ROM to read the encoded
MD5 hash looks something like that in Figure 12.

The music in the ROM is Danger Streets, com-
posed and released to the public domain by Shiru,
also known as DJ Uranus.46

45unzip pocorgtfo14.pdf fastcoll-v1.0.0.5-1.zip
46https://shiru.untergrund.net/

1 /∗ memory address o f the s t a r t to the encoded MD5: ∗/
#define MD5_OFFSET 0x9F70

3 /∗ memory address o f the lookup t a b l e : ∗/
#define MD5_DIFFS_OFFSET (MD5_OFFSET+128∗128) /∗ 128∗128 = 16 ,384 by t e s ∗/

5 /∗∗
∗ Reads one o f the 16 by t e s from the encoded MD5 hash

7 ∗/
uint8_t read_md5_byte (uint8_t byte_index) {

9 uint8_t byte = 0 ;
for (uint8_t b i t =0; b i t <8; ++b i t) {

11 uintptr_t d i f f _ o f f s e t = MD5_DIFFS_OFFSET /∗ lookup t a b l e encodes the by te ∗/
+ 2 ∗ 8 ∗ byte_index /∗ index t ha t i s d i f f e r e n t ∗/

13 + 2 ∗ b i t) ; /∗ between the c o l l i d e d b l o c k s ∗/
uintptr_t o f f s e t = MD5_OFFSET

15 + 128 ∗ 8 ∗ (uintptr_t) byte_index /∗ 1024 B per encoded by te ∗/
+ 128 ∗ (uintptr_t) b i t

17 + PEEK(d i f f _ o f f s e t) ; /∗ index o f the by te to compare ∗/
byte <<= 1 ;

19 i f (PEEK(o f f s e t) == PEEK(d i f f _ o f f s e t + 1)) { /∗ second by te o f the lookup t a b l e ∗/
byte |= 1 ; /∗ encodes the va lue o f the by te ∗/

21 } /∗ in the c o l l i s i o n b l o c k t ha t ∗/
} /∗ r ep re s en t s "1" ∗/

23 return byte ;
}

Figure 12. Colliding Block Reader

59

14:13 Tithe us your Alms of 0day!

from the desk of Pastor Manul Laphroaig,

International Church of the Weird Machines

Dearest neighbor,
A man once was walked into a talent agent’s

with his whole family: himself, his wife, two young
children, a shaggy dog, and Grandma. “We have a
vaudeville act,” he said, “and we’d like representa-
tion.”

So the agent, figuring it to be the fastest way to
evict these intruders from his office, let them per-
form the act, even though he expected it might be
a bit extreme for his tastes.

The man began by eliminating textfile log-
ging from a nearby server, while his wife in-
stalled NetworkManager and removed all traces of
ifconfig. Then the two of them installed Modem-

Manager and configured it to fight with logind for
all available serial ports.

And then the kids got involved, working together
to place a privesc vuln by writing SUID files with
07777 permissions for touch() whenever the mode
type is invalid!

And then while the talent agent keeps watching,
Grandma and the dog come out, and they exploit
the bug by dropping an SUID file owned by root!

And the poor talent agent, he’s just sitting there
with his jaw dropped, so he asks the only question
he can think to ask.

“That’s some act.” he says, “What do you call
it?”

“We call it, systemd!”

Do this: write an email telling our editors how
to reproduce ONE clever, technical trick from your
research. If you are uncertain of your English, we’ll
happily translate from French, Russian, Southern
Appalachian, and German. If you don’t speak those
languages, we’ll draft a translator from those poor
sods who owe us favors.

Like an email, keep it short. Like an email, you
should assume that we already know more than a
bit about hacking, and that we’ll be insulted or—
WORSE!—that we’ll be bored if you include a long
tutorial where a quick reminder would do.

Just use 7-bit ASCII if your language doesn’t
require funny letters, as whenever we receive some-
thing typeset in OpenOffice, we briefly mistake it
for a ransom note. Don’t try to make it thorough
or broad. Don’t use bullet-points, as this isn’t a
damned Powerpoint deck. Keep your code samples
short and sweet; we can leave the long-form code as
an attachment. Do not send us LATEX; it’s our job
to do the typesetting!

Don’t tell us that it’s possible; rather, teach us
how to do it ourselves with the absolute minimum
of formality and bullshit.

Like an email, we expect informal (or faux-
biblical) language and hand-sketched diagrams.
Write it in a single sitting, and leave any editing
for your poor preacherman to do over a bottle of
fine scotch. Send this to pastor@phrack org and
hope that the neighborly Phrack folks—praise be to
them!—aren’t man-in-the-middling our submission
process.

Yours in PoC and Pwnage,
Pastor Manul Laphroaig, T G S B

60

