
PoC||GTFOPoC||GTFOP
r
o
o
f

C
o
n
c
e
p
t

G
e
t

T
h
e

F
u
c
k

O
u
t

o r

fo

PASTOR LAPHROAIG’S MERCY SHIPPASTOR LAPHROAIG’S MERCY SHIP

HOLDS STONES FROM THE IVORY TOWER,HOLDS STONES FROM THE IVORY TOWER,

BUT ONLY AS BALLAST!BUT ONLY AS BALLAST!

e0, $0 USD, 10s 6d GBP, 0 RSD, 0 SEK, $50 CAD, 6× 10
29 Pengő (3× 10

8 Adópengő).
Üres hasnak elég a szép szó; это самиздат. pocorgtfo13.pdf. October 18, 2016.

13:213:2 Atari Star RaidersAtari Star Raiders

13:313:3 Slowing Down a Race ConditionSlowing Down a Race Condition

13:413:4 Glitching Attacks over USB; or,Glitching Attacks over USB; or,

A Wacom Tablet Reads RFIDsA Wacom Tablet Reads RFIDs

13:513:5 Running AMBE Firmware in LinuxRunning AMBE Firmware in Linux

13:613:6 A Rogue Strategy for SpinlocksA Rogue Strategy for Spinlocks

13:713:7 Reverse Engineering LoRa’s PHYReverse Engineering LoRa’s PHY

13:813:8 Concerning Plumbers and PopperConcerning Plumbers and Popper

13:913:9 Where is ShimDBC.exe?Where is ShimDBC.exe?

13:1013:10 Postscript for Schizophrenic GhostsPostscript for Schizophrenic Ghosts

Legal Note: In solidarity with , the Author Formerly Known as Homer Hickam, we place no restrictions
of any kind upon our authors. They are quite welcome to do whatever the hell they like with their own
work, in any medium they like, including but not limited to endeavors of theater and interpretive dance.

Reprints: Bitrot will burn libraries with merciless indignity that even Pets Dot Com didn’t deserve. Please
mirror—don’t merely link!—pocorgtfo13.pdf and our other issues far and wide, so our articles can help fight
the coming flame deluge. We like the following mirrors.
https://unpack.debug.su/pocorgtfo/

https://pocorgtfo.hacke.rs/

https://www.alchemistowl.org/pocorgtfo/

http://www.sultanik.com/pocorgtfo/

Technical Note: As described in PoC‖GTFO 13:10, pocorgtfo13.pdf is a polyglot that may be inter-
preted as both a PDF and a PostScript file. As a PDF, this file is mostly harmless, but we warn you that
the Postscript will render differently each time, including both a randomly generated maze and—if Tavis
Ormandy hasn’t killed such a lovely bug yet—a copy of your /etc/passwd file.

Cover Art: The cover artwork from this issue is by Harry Clarke, first used to illustrate the poem Sea
Fever by John Masefield in the collection The Year’s at the Spring, 1920.

Printing Instructions: Pirate print runs of this journal are most welcome! PoC‖GTFO is to be printed
duplex, then folded and stapled in the center. Print on A3 paper in Europe and Tabloid (11” x 17”) paper in
Samland, then fold to get a booklet in A4 or Letter size. Secret volcano labs in Canada may use P3 (280 mm
x 430 mm) if they like, folded to make P4. The outermost sheet should be on thicker paper to form a cover.

This is how to convert an issue for duplex printing.

sudo apt-get install pdfjam

pdfbook --short-edge --vanilla --paper a3paper pocorgtfo13.pdf -o pocorgtfo13-book.pdf

Man of The Book Manul Laphroaig
Editor of Last Resort Melilot
TEXnician Evan Sultanik
Editorial Whipping Boy Jacob Torrey
Funky File Supervisor Ange Albertini
Assistant Scenic Designer Philippe Teuwen

and sundry others

2

1 Read me if you want to live!

Neighbors, please join me in reading this four-
teenth release of the International Journal of Proof
of Concept or Get the Fuck Out, a friendly little
collection of articles for ladies and gentlemen of dis-
tinguished ability and taste in the field of reverse en-
gineering and worshippers of weird machines. This
fourteenth release is given on paper to the fine neigh-
bors of São Paulo, San Diego, and Budapest.

If you are missing the first thirteen issues, we the
editors suggest pirating them from the usual loca-
tions, or on paper from a neighbor who picked up a
copy of the first in Vegas, the second in São Paulo,
the third in Hamburg, the fourth in Heidelberg, the
fifth in Montréal, the sixth in Las Vegas, the seventh
from his parents’ inkjet printer during the Thanks-
giving holiday, the eighth in Heidelberg, the ninth in
Montréal, the tenth in Novi Sad or Stockholm, the
eleventh in Washington D.C., the twelfth in Heidel-
berg, or the thirteenth in Montréal.

After our paper release, and only when qual-
ity control has been passed, we will make an elec-
tronic release named pocorgtfo13.pdf. It is valid
as PDF, ZIP, and PostScript; please read it with
Adobe Reader, unzip, and gv.

We begin on page 5 with the story of how STAR

RAIDERS by Doug Neubauer for the Atari 400 was
taken apart by Lorenz Weist, from a mere ROM car-
tridge dump to annotated and literate 6502 disas-
sembly. By a stroke of luck, Lorenz was able to read
Doug’s original source code for the game after com-

pleting his reverse engineering project, giving him
the rare opportunity to confirm his understanding
of the game’s design and behavior.

On page 24, James Forshaw introduces us to a
nifty little trick for simplifying reliable exploitation
of race condition vulnerabilities. Rather than spin
up a dozen attempts to improve racetrack odds, he
instead induces situations with pathological perfor-
mance penalties to Windows NT system calls, stun-
ning the threads of execution that might interfere
with his exploit for twenty minutes or more!

Micah Elizabeth Scott continues to send us bril-
liant articles that refuse to be described by a single
abstract, so let’s just say that on page 30 she ex-
plains a USB magic trick in which her FaceWhis-
perer board—combining the Facedancer and the
Chip Whisperer—is able to reliably glitch the USB
stack of an embedded device to dump its firmware.
Or, we could say that on page 30 she explains how
to use undocumented commands from that firmware
dump to program the Harvard device by ROP. Or,
we could say that on page 30 she shows you to read
RFID tags with a Wacom tablet. These tricks are
all the same article, and you’d be a fool not to read
it.

3

In PoC‖GTFO 10:8, Travis Goodspeed jailbroke
the Tytera MD380 radio to allow for firmware ex-
traction and patching. Since then, a lively open
source project has sprung up, with fancy new fea-
tures and fixes to old bugs. On page 38, he describes
how to rip the AMBE audio codec out of the radio
firmware, transforming it into a command line audio
processing tool that runs on any Linux workstation.
Similar tricks can be used to quickly toss together
emulators for many ARM and PowerPC embedded
systems, re-using their library functions, or fuzzing
their parsers in the familiar environment of an ev-
eryday laptop.

Evan Sultanik is back with a safe cracking adven-
ture that could only be expressed as a play in three
acts, narrated by our own Pastor Manul Laphroaig.
Speaking parts are available for Alice Feynman, Bob
Schrute, Havva al-Kindi, and the ghost of Paul
Erdős. You’ll find Evan’s script on page 43.

Matt Knight has been reverse engineering the
PHY of LoRa, a low-power protocol for sub-GHz
wireless networking over long distances. On page 48
you will find not just the protocol details that al-
lowed him to write an open source receiver, but, far
more importantly, you will also find the methods by
which he reverse engineered this information from
captured packets, vague application notes, and the
outright lies of the patent application.

Pastor Manul Laphroaig, your friendly neighbor-
hood evangelist of the gospel of the weird machines,

has a sermon for you on page 60. He reminds us
that science takes place neither on stage in front of
a live studio audience nor in committees and gov-
ernment offices, but over a glass of fine scotch that’s
accompanied by finer conversation of practitioners.
In the same way that we oughtn’t put Tim the “Tool
Man” Taylor in charge of vocational education, we
ought to leave the teaching of science to those who
do it, not those who talk about it on TV.

Geoff Chappell is an old-school reverse engineer,
an x86 archaeologist who has spent the past twenty-
four years reading Windows binaries to identify all
the forgotten features and corner cases that the rest
of us might take for granted.1 On page 63, he
introduces us to the mystery of Microsoft’s Shim
Database Compiler, an unpublished tool for compil-
ing driver shims that doesn’t seem to be available
to the outside world. Geoff shows us that, in fact,
the tool is available, wrapped up inside of a GUI
as QFixApp.exe or CompatAdmin.exe. By patch-
ing the program to expose its intact winmain(), he
can recover the long-lost ShimDBC.exe for compiling
Windows driver compatibility shims from XML!

Evan Sultanik and Philippe Teuwen have teamed
up on page 71, to explain the inner workings of
pocorgtfo13.pdf, which you can rename to read
as pocorgtfo13.zip or pocorgtfo13.ps.

On page 72, the last page, we pass around the
collection plate. Our church has no interest in cash
or cheques, but we’d love your donation of a nifty
reverse engineering story. Please send one our way.

1Geoff was the first to discover Aaron R. Reynolds’ “AARD” code from the beta release of Windows 3.1 that intentionally
broke compatibility with DR-DOS. He also has a delightful article on exactly how AOL exploited a buffer overflow in their own
AOL Instant Messenger client to distinguish it from Microsoft’s clone, MSN Messenger.

4

2 Reverse Engineering Star Raiders

by Lorenz Wiest

2.1 Introduction

STAR RAIDERS is a seminal computer game pub-
lished by Atari Inc. in 1979 as one of the first titles
for the original Atari 8-bit Home Computer System
(Atari 400 and Atari 800). It was written by Atari
engineer Doug Neubauer, who also created the sys-
tem’s POKEY sound chip. STAR RAIDERS is consid-

ered to be one of the ten most important computer
games of all time.2.

CONTROLLER JACKS

SYSTEM

RESET

OPTION

SELECT

START

21 3 4

PLYR 1 PLYR 2 PLYR 3 PLYR 4

The game is a 3D space combat flight simulation
where you fly your starship through space, shooting
at attacking Zylon spaceships.The game’s universe
is made up of a 16 × 8 grid of sectors Some of
them contain enemy Zylon units some a friendly
starbase The Zylon units converge toward the star-
bases and try to destroy them. The starbases serve
as repair and refueling points for your starship. You
move your starship between sectors with your hyper-
warp drive The game is over if you have destroyed
all Zylon ships, have ran out of energy, or if the
Zylons have destroyed all starbases.

At a time when home computer games were
pretty static – think SPACE INVADERS (1978) and
PAC MAN (1980) – STAR RAIDERS was a huge hit
because the game play centered on the very dynamic
3D first-person view out of your starship’s cockpit
window.

The original Atari 8-bit Home Computer System

2“Is That Just Some Game? No, It’s a Cultural Artifact.” Heather Chaplin, The New York Times, March 12, 2007.

5

has up to 48 KB RAM and uses a Motorola 6502
CPU. The same CPU is also used in the Apple II,
the Commodore C64 (a 6502 variant), and the T-
800 Terminator 3 Several proprietary Atari custom
chips provide additional capabilities to the system.
STAR RAIDERS shows off many of them: 5 Play-
ers (sprites), mixed text and pixel graphics modes,
dynamic Display Lists, a custom character set, 4-
channel sound, Vertical Blank Interrupt and Dis-
play List Interrupt code – even the BCD mode of
the 6502 CPU is used C

CONTROLLER JACKS21 3 4

PULL OPEN SYSTEMRESETOPTIONSELECTSTART

@angealbertini 2016

li
gh

t
p
en

so
u
n
d

se
ri

al
b
u
s

p
ic

tu
re

co
n
so

le
 s

w
it
ch

es

jo
y
st

ic
k
 t

ri
gg

er
s

ke
y
b
oa

rd

keyboard
speaker

p
ad

d
le

s

ke
y
b
oa

rd
co

n
tr

ol
le

rs

jo
y
st

ic
k

p
ad

d
le

tr
ig

ge
rs

MOS
6502

RAM
left

cartridge
right

cartridge OS
ROM

disk
drives

other
periph.

POtentiometer
KEYboard
integrated circuit

Peripheral
Interface
Adaptor

Color/Graphics
Television

Interface Adaptor16KB - 48KB

1.77-1,79Mhz

16bit freq counter mode
keyboard/paddle scanning
IRQ generator

Alpha-Numeric
Television
Interface
ControllerSALLY

Sprites: player/missile

display lists

processor busprocessor bus

I have been always wondering what made STAR
RAIDERS tick. I was especially curious how that
3D first-person view star field worked, in particu-
lar the rotations of the stars when you fly a turn.
So I decided to reverse engineer the game, aiming
at a complete, fully documented assembly language
source code of STAR RAIDERS.

;***
;* *
;* S T A R R A I D E R S *
;* *
;* for the Atari 8-bit Home Computer System *
;* *
;* Reverse-engineered and documented assembly language source code *
;* *
;* by *
;* *
;* Lorenz Wiest *
;* *
;* (lo.wiest(at)web.de) *
;* *
;* First Release *
;* 22-SEP-2015 *
;* *
;* Last Update *
;* 10-AUG-2016 *
;* *
;* STAR RAIDERS was created by Douglas Neubauer *
;* STAR RAIDERS was published by Atari Inc. *
;* *
;***

In the following sections I’ll show you how I ap-
proached the reverse engineering effort, introduce
my favorite piece of code in STAR RAIDERS, talk
about how the tight memory limits influenced the
implementation, reveal some bugs, point at some
mysterious code, and explain how I got a grip on
documenting STAR RAIDERS. From time to time, to
provide some context to you, I will reference memory
locations of the game, which you can look up in the
reverse engineered, complete, and fully documented
assembly language source code of STAR RAIDERS

available on GitHub.4

2.2 Getting Started

STAR RAIDERS is distributed as an 8 KB ROM car-
tridge, occupying memory locations $A000 to $BFFF.

The obvious first step was to prod a ROM dump
with a disassembler and to apply Atari’s published
hardware and OS symbols to the disassembly. To
my surprise this soon revealed that code and data
were clearly separated into three parts:
$A000 – $A149 Data (Part 1 of 2)
$A14A – $B8DE Code (6502 instructions)
$B8DF – $BFFF Data (Part 2 of 2)

This clear separation helped me instantly to get
an overview of the code part, as I could create a
disassembly of the code in one go and not having to
sift slowly through the bytes of the ROM, deciding
which ones are instructions and which ones are data.

Closer inspection of the code part revealed that it
was composed of neatly separated subroutines. Each
subroutine handles a specific task. The largest sub-
routine is the main game loop GAMELOOP ($A1F3),
shown in Figure 1. What I expected to be spaghetti
code – given the development tools of 1979 and the
substantial amount of game features crammed into
the 8K ROM – turned out to be surprisingly struc-
tured code. Table 1 lists all subroutines of STAR
RAIDERS, as their function emerged during the re-
verse engineering effort, giving a good overview how
the STAR RAIDERS code is organized.

Figure 2 shows the “genome sequence” of the
STAR RAIDERS 8 KB ROM: The 8192 bytes of the
game are stacked vertically, with each byte repre-
sented by a tiny, solid horizontal line of 8 pixels.
This stack is split into strips of 192 bytes, arranged
side-by-side. Alternating light and dark blue areas
represent bytes of distinct subroutines. Alternat-
ing light and dark green and purple areas repre-
sent bytes of distinct sections of data (lookup tables,
graphical shapes, etc.). When data bytes represent
graphical shapes, the solid line of a byte is replaced
by its actual bit pattern (in purple color).

There are a couple of interesting things to see:

• The figure reflects the ROM’s separation into
a data part (green and purple), a code part
(blue), and one more data part (green and pur-
ple).

• The first data part contains mostly the custom

3In the movie TERMINATOR (1984) there are scenes showing the Terminator’s point of view in shades of red. In these
scenes lines of source code are listed onscreen. Close inspection of still frames of the movie reveal this to be 6502 assembly
language source code.

4git clone https://github.com/lwiest/StarRaiders or unzip pocorgtfo13.pdf StarRaiders.zip

6

GAMELOOP
$A1F3

UPDATTCOMP Update Attack Computer Display
$A7BF

HYPERWARP Handle hyperwarp
$A89B

MANEUVER Maneuver our starship's and Zylon
photon torpedoes and Zylon ships

$AA79

INITEXPL Initialize explosion
$AC6B

DOCKING Handle docking at starbase,
launch and return of transfer vessel

$ACE6

MODDLST Modify Display List
$ADF1

CLRPLAYFIELD Clear PLAYFIELD memory
$AE0D

TRIGGER Handle joystick trigger
$AE29

NOISE Copy noise sound pattern
$AEA8

DAMAGE Damage or destroy one of our starship's subsystems
$AEE1

COLLISION Detect a collision of our starship's photon torpedoes
$AF3D

GAMEOVER Handle Game Over
$B10A

FLUSHGAMELOOP Handle remaining tasks at the end
of a game loop iteration

$B4E4

DRAWLINES Draw horizontal and vertical lines
$A76F

PROJECTION Calculate pixel column (or row) number
from position vector$AA21

KEYBOARD Handle Keyboard Input
$AFFE

SETVIEW Set Front view
$B045

SELECTWARP Select hyperwarp arrival location
on Galactic Chart$B162

ROTATE Rotate position vector component
(coordinate) by fixed angle

$B69B

SCREENCOLUMN Calculate pixel column number
from centered pixel column number$B6FB

SCREENROW Calculate pixel row number
from centered pixel row number$B71E

INITPOSVEC Initialize position vector of a space object
$B764

UPDPANEL Update Control Panel Display
$B804

DECENERGYDecrease energy
$B86F

Initialize program (cold start)
$A14A
INITCOLD

Entry point when SELECT function key was pressed
$A15A
INITSELECT

Entry point when program switches into demo mode
$A15C
INITDEMO

Entry point when START function key was pressed
$A15E
INITSTART

UPDTITLE Update title line
$B216

A B A is followed by B in memory A B A calls B (and returns)

A B A jumps to B (no return)

$A6D0

Figure 1. Simplified Call Graph of Start Up and Game Loop

7

1 $A14A INITCOLD I n i t i a l i z e program (Cold s t a r t)
$A15A INITSELECT Entry po int when SELECT func t i on key was pre s s ed

3 $A15C INITDEMO Entry po int when program swi t che s in to demo mode
$A15E INITSTART Entry po int when START func t i on key was pre s sed

5 $A1F3 GAMELOOP Game loop
$A6D1 VBIHNDLR Ve r t i c a l Blank In t e r rup t Handler

7 $A718 DLSTHNDLR Display L i s t In t e r rup t Handler
$A751 IRQHNDLR Int e r rup t Request (IRQ) Handler

9 $A76F DRAWLINES Draw ho r i z on t a l and v e r t i c a l l i n e s
$A782 DRAWLINE Draw a s i n g l e ho r i z on t a l or v e r t i c a l l i n e

11 $A784 DRAWLINE2 Draw b l i p in Attack Computer
$A7BF UPDATTCOMP Update Attack Computer Display

13 $A89B HYPERWARP Handle hyperwarp
$A980 ABORTWARP Abort hyperwarp

15 $A987 ENDWARP End hyperwarp
$A98D CLEANUPWARP Clean up hyperwarp v a r i a b l e s

17 $A9B4 INITTRAIL I n i t i a l i z e s t a r t r a i l dur ing STAR TRAIL PHASE of hyperwarp
$AA21 PROJECTION Calcu la te p i x e l column (or row) number from po s i t i o n vec to r

19 $AA79 MANEUVER Maneuver our s t a r s h i p ’ s and Zylon photon torpedoes and Zylon sh ip s
$AC6B INITEXPL I n i t i a l i z e exp l o s i on

21 $ACAF COPYPOSVEC Copy a po s i t i o n vec to r
$ACC1 COPYPOSXY Copy x and y components (coo rd ina t e s) o f p o s i t i o n vec to r

23 $ACE6 DOCKING Handle docking at s tarbase , launch and return o f t r a n s f e r v e s s e l
$ADF1 MODDLST Modify Display L i s t

25 $AE0D CLRPLAYFIELD Clear PLAYFIELD memory
$AE0F CLRMEM Clear memory

27 $AE29 TRIGGER Handle j o y s t i c k t r i g g e r
$AEA8 NOISE Copy no i s e sound pattern

29 $AECA HOMINGVEL Calcu la te homing v e l o c i t y o f our s t a r s h i p ’ s photon torpedo 0 or 1
$AEE1 DAMAGE Damage or des t roy one o f our s t a r s h i p ’ s subsystems

31 $AF3D COLLISION Detect a c o l l i s i o n o f our s t a r s h i p ’ s photon torpedoes
$AFFE KEYBOARD Handle Keyboard Input

33 $B045 SETVIEW Set Front view
$B07B UPDSCREEN Clear PLAYFIELD, draw Attack

35 $B10A GAMEOVER Handle game over
$B121 GAMEOVER2 Game over (Miss ion s u c c e s s f u l)

37 $B162 SELECTWARP Se l e c t hyperwarp a r r i v a l l o c a t i o n on Ga lac t i c Chart
$B1A7 CALCWARP Calcu la te and d i sp l ay hyperwarp energy

39 $B216 UPDTITLE Update t i t l e l i n e
$B223 SETTITLE Set t i t l e phrase in t i t l e l i n e

41 $B2AB SOUND Handle sound e f f e c t s
$B3A6 BEEP Copy beeper sound pattern

43 $B3BA INITIALIZE More game i n i t i a l i z a t i o n
$B4B9 DRAWGC Draw Galac t i c Chart

45 $B4E4 FLUSHGAMELOOP Handle remaining ta sk s at the end o f a game loop i t e r a t i o n
$B69B ROTATE Rotate p o s i t i o n vec to r component (coord inate) by f i x ed ang le

47 $B6FB SCREENCOLUMN Calcu la te p i x e l column number from cente red p i x e l column number
$B71E SCREENROW Calcu la te p i x e l row number from cente red p i x e l row number

49 $B764 INITPOSVEC I n i t i a l i z e p o s i t i o n vec to r o f a space ob j e c t
$B7BE RNDINVXY Randomly i nv e r t the x and y components o f a po s i t i o n vec to r

51 $B7F1 ISSURROUNDED Check i f a s e c t o r i s surrounded by Zylon un i t s
$B804 UPDPANEL Control Panel Display

53 $B86F DECENERGY Decrease energy
$B8A7 SHOWCOORD Display a po s i t i o n vec to r component (coord inate) in

55 Control Panel Display
$B8CD SHOWDIGITS Display a value by a readout o f the Control Panel Display

Table 1. Star Raiders Subroutines

8

CODE DATABITMAP

+00

+08

+10

+18

+20

+28

+30

+38

+40

+48

+50

+58

+60

+68

+70

+78

+80

+88

+90

+98

+A0

+A8

+B0

+B8

+C0

G
A
M
E
L
O
O
P

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

A000 A180 A300 A480 A600 A780 A900 AA80 AC00 AD80 AF00 B080 B200 B380 B500 B680 B800 B980 BB00 BC80 BE00 BF80
 A0C0 A240 A3C0 A540 A6C0 A840 A9C0 AB40 ACC0 AE40 AFC0 B140 B2C0 B440 B5C0 B740 B8C0 BA40 BBC0 BD40 BEC0

W

O

R

D

T

A

B

W

O

R

D

T

A

B

M
A
N
E
U
V
E
R

M
A
N
E
U
V
E
R

F
L
U
S
H
G
A
M
E
L
O
O
P

Figure 2. Genome Sequence of the STAR RAIDERS ROM

font (in strips 1-2).

• The largest contiguous (dark) blue chunk rep-
resents the 1246 bytes of the main game loop
GAMELOOP ($A1F3) (in strips 3-10).

• At the beginning of the second data part are
the shapes for the Players (sprites) (in strips
34-36).

• The largest contiguous (light) green chunk rep-
resents the 503 bytes of the game’s word table
WORDTAB ($BC2B) (in strips 38-41).

A good reverse engineering strategy was to start
working from code locations that used Atari’s pub-
lished symbols, the equivalent of piecing together
the border of a jigsaw puzzle first before starting to
tackle the puzzle’s center. Then, however, came the
inevitable and very long stretch of reconstructing
the game’s logic and variables with a combination
of educated guesses, trial-and-error, and lots of pa-
tience. At this stage, the tools I used mostly were
nothing but a text editor (Notepad) and a word pro-
cessor (Microsoft Word) to fill the gaps in the doc-
umentation of the code and the data. I also created

a memory map text file to list the used memory lo-
cations and their purpose. These entries were con-
tinually updated – and more than often discarded
after it turned out that I had taken a wrong turn.

2.3 A Programming Gem: Rotating
3D Vectors

What is the most interesting, fascinating, and un-
expected piece of code in STAR RAIDERS? My pick
would be the very code that started me to reverse
engineer STAR RAIDERS in the first place: subrou-
tine ROTATE ($B69B), which rotates objects in the
game’s 3D coordinate space (shown in Figure 3).
And here is why: Rotation calculations usually in-
volve trigonometry, matrices, and so on – at least
some multiplications. But the 6502 CPU has only
8-bit addition and subtraction operations. It does
not provide either a multiplication or a division op-
eration – and certainly no trig operation! So how do
the rotation calculations work, then?

Let’s start with the basics: The game uses a 3D
coordinate system with the position of our starship
at the center of the coordinate system. The loca-
tions of all space objects (Zylon ships, meteors, pho-

9

ton torpedoes, starbase, transfer vessel, Hyperwarp
Target Marker, stars, and explosion fragments) are
described by a position vector relative to our star-
ship.

A position vector is composed of an x, y, and z
component, whose values I call the x, y, and z coor-
dinates with the arbitrary unit <KM>. The range
of a coordinate is −65536 to +65535 <KM>.

Each coordinate is a signed 17-bit integer num-
ber, which fits into three bytes. Bit 16 contains
the sign bit, which is 1 for positive and 0 for nega-
tive sign. Bits 15 to 0 are the mantissa as a two’s-
complement integer.

Sign Mantissa
2 B16 B15 . . . B8 B7 B0

| | | | |
4 0000000∗ ∗∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗∗

Some example bit patterns for coordinates:

00000001 11111111 11111111 = +65535 <KM>
2 00000001 00000001 00000000 = +256 <KM>

00000001 00000000 11111111 = +255 <KM>
4 00000001 00000000 00000001 = +1 <KM>

00000001 00000000 00000000 = +0 <KM>
6 00000000 11111111 11111111 = −1 <KM>

00000000 11111111 11111110 = −2 <KM>
8 00000000 11111111 00000001 = −255 <KM>

00000000 11111111 00000000 = −256 <KM>
10 00000000 00000000 00000000 = −65536 <KM>

The position vector for each space object is
stored in nine tables (3 coordinates × 3 bytes for
each coordinate). There are up to 49 space objects
used in the game simultaneously, so each table is 49
bytes long:

XPOSSIGN XPOSHI XPOSLO

($09DE..$0A0E) ($0A71..$0AA1) ($0B04..$0B34)

YPOSSIGN YPOSHI YPOSLO

($0A0F..$0A3F) ($0AA2..$0AD2) ($0B35..$0B65)

ZPOSSIGN ZPOSHI ZPOSLO

($09AD..$09DD) ($0A40..$0A70) ($0AD3..$0B03)

With that explained, let’s have a look at sub-
routine ROTATE ($B69B). This subroutine rotates a
position vector component (coordinate) of a space
object by a fixed angle around the center of the
3D coordinate system, the location of our starship.
This operation is used in 3 out of 4 of the game’s
view modes (Front view, Aft view, Long-Range Scan
view) to rotate space objects in and out of the view.

2.3.1 Rotation Mathematics

The game uses a left-handed 3D coordinate system
with the positive x-axis pointing to the right, the
positive y-axis pointing up, and the positive z-axis
pointing into flight direction.

ry

z-axis

x-axis
x x’

z

z’

y--axis

x-axis

z-axis

A rotation in this coordinate system around the
y-axis (horizontal rotation) can be expressed as

x′ = cos(ry)x+ sin(ry)z (1)

z′ = − sin(ry)x+ cos(ry)z

where ry is the clockwise rotation angle around the
y-axis, x and z are the coordinates before this ro-
tation, and the primed coordinates x′ and z′ the
coordinates after this rotation. The y-coordinate is
not changed by this rotation.

rx

y-axis

z-axis
z z’

y

y’

y-axis

x-axis

z-axis

A rotation in this coordinate system around the
x-axis (vertical rotation) can be expressed as

z′ = cos(rx)z + sin(rx)y (2)

y′ = − sin(rx)z + cos(rx)y

where rx is the clockwise rotation angle around the
x-axis, z and y are the coordinates before this ro-
tation, and the primed coordinates z′ and y′ the
coordinates after this rotation. The x-coordinate is
not changed by this rotation.

2.3.2 Subroutine Implementation Overview

A single call of subroutine ROTATE ($B69B) is able
to compute one of the four expressions in Equa-
tions 1 and 2. To compute all four expressions to

10

get the new set of coordinates, this subroutine has
to be called four times. This is done twice in pairs
in GAMELOOP ($A1F3) at $A391 and $A398, and at
$A3AE and $A3B5, respectively.

The first pair of calls calculates the new x and
z coordinates of a space object due to a horizon-
tal (left/right) rotation of our starship around the
y-axis following the expressions of Equation 1.

The second pair of calls calculates the new y and
z coordinates of the same space object due to a ver-
tical (up/down) rotation of our starship around the
x-axis following the expressions of Equation 2.

If you look at the code of ROTATE ($B69B), you
may be wondering how this calculation is actually
executed, as there is neither a sine nor cosine func-
tion call. What you’ll actually find implemented,
however, are the following calculations:

Joystick Left

x := x+ z/64 (3)

z := −x/64 + z

Joystick Right

x := x− z/64 (4)

z := x/64 + z

Joystick Down

y := y + z/64 (5)

z := −y/64 + z

Joystick Up

y := y − z/64 (6)

z := y/64 + z

2.3.3 CORDIC Algorithm

When you compare the expressions of Equations 1–2
with expressions of Equations 3–6, notice the simi-
larity between the expressions if you substitute5

sin(ry) → 1/64

cos(ry) → 1

sin(rx) → 1/64

cos(rx) → 1

From sin(ry) = 1/64 and sin(rx) = 1/64 you can
derive that the rotation angles ry and rx by which
the space object is rotated (per game loop iteration)
have a constant value of 0.89◦, as arcsin(1/64) =
0.89◦.

What about cos(ry) and cos(rx)? The substi-
tution does not match our derived angle exactly,
because cos(0.89◦) = 0.99988 and is not exactly
1. However, this value is so close that substitut-
ing cos(0.89◦) with 1 is a very good approximation,
simplifying calculations significantly.

Another significant simplification results from
the division by 64, as the actual division operation
can be replaced with a much faster bit shift opera-
tion.

This calculation-friendly way of computing rota-
tions is also known as the “CORDIC (COordinate
Rotation DIgital Computer)” algorithm.

2.3.4 Minsky Rotation

There is one more interesting mathematical sub-
tlety: Did you notice that expressions of Equa-
tions 1 and 2 use a new (primed) pair of variables
to store the resulting coordinates, whereas in the
implemented Equations 3–6, the value of the first
coordinate of a coordinate pair is overwritten with
its new value and this value is used in the subsequent
calculation of the second coordinate? For example,
when the joystick is pushed left, the first call of this
subroutine calculates the new value of x according
to first expression of Equation 3, overwriting the old
value of x. During the second call to calculate z ac-
cording to the second expression of Equation 3, the
new value of x is used instead of the old one. Is this
to save the memory needed to temporarily store the
old value of x? Is this a bug? If so, why does the
rotation calculation actually work?

Have a look at the expressions of Equation 3 (the
other Equations 4–6 work in a similar fashion):

x := x+ z/64

z := −x/64 + z

If we substitute 1/64 with e, we get

x := x+ ez

z := −ex+ z

5This substitution gave a friendly mathematician who happened to see it a nasty shock. She yelled at us that cos2x+sin2x = 1

for all real x and forever, and therefore this could not possibly be a rotation; it’s a rotation with a stretch! We reminded her
of the old joke that in wartime the value of the cosine has been known to reach 4. —PML

11

Note that x is calculated first and then used in
the second expression. When using primed coordi-
nates for the resulting coordinates after calculating
the two expressions we get

x′ := x+ ez

z′ :=− ex′ + z

=− e(x+ ez) + z

=− ex+ (1− e2)z

or in matrix form

(

x′

z′

)

=

(

1 e
−e 1− e2

)(

x
z

)

Surprisingly, this turns out to be a rotation ma-
trix, because its determinant is (1× (1−e2)− (−e×
e)) = 1. (Incidentally, the column vectors of this
matrix do not form an orthogonal basis, as their
scalar product is 1 × e + (−e × (1 − e2)) = −e2.
Orthogonality holds for e = 0 only.)

This kind of rotation calculation is described
by Marvin Minsky in AIM 239 HAKMEM6 and is
called “Minsky Rotation.”

2.3.5 Subroutine Implementation Details

To better understand how the implementation of
this subroutine works, we must again look at Equa-
tions 3–6. If you rearrange the expressions a little,
their structure is always of the form:

TERM1 := TERM1 SIGN TERM2/64

or shorter

TERM1 := TERM1 SIGN TERM3

where TERM3 := TERM2/64 and SIGN := + or − and
where TERM1 and TERM2 are coordinates. In fact, this
is all this subroutine actually does: It simply adds
TERM2 divided by 64 to TERM1 or subtracts TERM2

divided by 64 from TERM1.
When calling this subroutine the correct table

indices for the appropriate coordinates TERM1 and
TERM2 are passed in the CPU’s Y and X registers,
respectively.

What about SIGN between TERM1 and TERM3?
Again, have a look at Equations 3–6. To compute

the two new coordinates after a rotation, the SIGN

toggles from plus to minus and vice versa. The SIGN
is initialized with the value of JOYSTICKDELTA ($6D)
before calling subroutine ROTATE ($B69B, Figure 3)
and is toggled in every call of this subroutine. The
initial value of SIGN should be positive (+, byte
value $01) if the rotation is clockwise (the joystick is
pushed right or up) and negative (−, byte value $FF)
if the rotation is counter-clockwise (the joystick is
pushed left or down), respectively. Because SIGN is
always toggled in ROTATE ($B69B) before the adding
or subtraction operation of TERM1 and TERM3 takes
place, you have to pass the already toggled value
with the first call.

Unclear still are three instructions starting at ad-
dress $B6AD. They seem to set the two least signifi-
cant bits of TERM3 in a random fashion. Could this
be some quick hack to avoid messing with exact but
potentially lengthy two’s-complement arithmetic?

CX40

2.4 Dodging Memory Limitations

It is impressing how much functionality was
squeezed into STAR RAIDERS. Not surprisingly, the
bytes of the 8 KB ROM are used up almost com-
pletely. Only a single byte is left unused at the very
end of the code. When counting four more bytes
from three orphaned entries in the game’s lookup
tables, only five bytes in total out of 8,192 bytes are
actually not used. ROM memory was extremely pre-
cious. Here are some techniques that demonstrate

6unzip pocorgtfo13.pdf AIM-239.pdf #Item 149, page 73.

12

; INPUT
2 ;

; X = Pos i t i on vector component index o f TERM2. Used va lues are :
4 ; $00 . . $30 −> z−component (z−coord inate) o f po s i t i on vector 0 . . 4 8

; $31 . . $61 −> x−component (x−coord inate) o f po s i t i on vector 0 . . 4 8
6 ; $62 . . $92 −> y−component (y−coord inate) o f po s i t i on vector 0 . . 4 8

;
8 ; Y = Pos i t i on vector component index o f TERM1. Used va lues are :

; $00 . . $30 −> z−component (z−coord inate) o f po s i t i on vector 0 . . 4 8
10 ; $31 . . $61 −> x−component (x−coord inate) o f po s i t i on vector 0 . . 4 8

; $62 . . $92 −> y−component (y−coord inate) o f po s i t i on vector 0 . . 4 8
12 ;

; JOYSTICKDELTA ($6D) = I n i t i a l value o f SIGN . Used va lues are :
14 ; $01 −> (= Pos i t i v e) Rotate r i gh t or up

; $FF −> (= Negative) Rotate l e f t or down
16

; TERM3 i s a 24−b i t value , r epre sented by 3 bytes as
18 ; $ (s i gn) (high byte) (low byte)

=006A L .TERM3LO = $6A ; TERM3 (high byte) , where TERM3 := TERM2 / 64
20 =006B L .TERM3HI = $6B ; TERM3 (low byte) , where TERM3 := TERM2 / 64

=006C L .TERM3SIGN = $6C ; TERM3 (s ign) , where TERM3 := TERM2 / 64
22

B69B BDAD09 ROTATE LDA ZPOSSIGN,X ;
24 B69E 4901 EOR #$01 ;

B6A0 F002 BEQ SKIP224 ; Skip i f s i gn o f TERM2 i s p o s i t i v e
26 B6A2 A9FF LDA #$FF ;

28 B6A4 856B SKIP224 STA L .TERM3HI ; I f TERM2 pos . −> TERM3 := $0000xx (= TERM2 / 256)
B6A6 856C STA L .TERM3SIGN ; I f TERM2 neg . −> TERM3 := $FFFFxx (= TERM2 / 256)

30 B6A8 BD400A LDA ZPOSHI ,X ; where xx := TERM2 (high byte)
B6AB 856A STA L .TERM3LO ;

32
B6AD AD0AD2 LDA RANDOM ; (?) Hack to avoid messing with two−complement ’ s

34 B6B0 09BF ORA #$BF ; (?) a r i thmet i c ? Provides two l e a s t s i g n i f i c a n t
B6B2 5DD30A EOR ZPOSLO,X ; (?) b i t s B1 . . 0 in TERM3.

36
B6B5 0A ASL A ; TERM3 := TERM3 ∗ 4 (= TERM2 / 256 ∗ 4 = TERM2 / 64)

38 B6B6 266A ROL L .TERM3LO ;
B6B8 266B ROL L .TERM3HI ;

40 B6BA 0A ASL A ;
B6BB 266A ROL L .TERM3LO ;

42 B6BD 266B ROL L .TERM3HI ;

44 B6BF A56D LDA JOYSTICKDELTA ; Toggle SIGN fo r next c a l l o f ROTATE
B6C1 49FF EOR #$FF ;

46 B6C3 856D STA JOYSTICKDELTA ;
B6C5 301A BMI SKIP225 ; I f SIGN negat ive then subtract , e l s e add TERM3

48
;∗∗∗ Addition ∗∗

50 B6C7 18 CLC ; TERM1 := TERM1 + TERM3
B6C8 B9D30A LDA ZPOSLO,Y ; (24− b i t add i t i on)

52 B6CB 656A ADC L .TERM3LO ;
B6CD 99D30A STA ZPOSLO,Y ;

54
B6D0 B9400A LDA ZPOSHI ,Y ;

56 B6D3 656B ADC L .TERM3HI ;
B6D5 99400A STA ZPOSHI ,Y ;

58
B6D8 B9AD09 LDA ZPOSSIGN,Y ;

60 B6DB 656C ADC L .TERM3SIGN ;
B6DD 99AD09 STA ZPOSSIGN,Y ;

62 B6E0 60 RTS ;

64 ;∗∗∗ Subtract ion ∗∗∗

B6E1 38 SKIP225 SEC ; TERM1 := TERM1 − TERM3
66 B6E2 B9D30A LDA ZPOSLO,Y ; (24− b i t subt rac t i on)

B6E5 E56A SBC L .TERM3LO ;
68 B6E7 99D30A STA ZPOSLO,Y ;

70 B6EA B9400A LDA ZPOSHI ,Y ;
B6ED E56B SBC L .TERM3HI ;

72 B6EF 99400A STA ZPOSHI ,Y ;

74 B6F2 B9AD09 LDA ZPOSSIGN,Y ;
B6F5 E56C SBC L .TERM3SIGN ;

76 B6F7 99AD09 STA ZPOSSIGN,Y ;
B6FA 60 RTS ;

Figure 3. ROTATE Subroutine at $B69B

13

the fierce fight for each spare ROM byte.

2.4.1 Loop Jamming

Loop jamming is the technique of combining two
loops into one, reusing the loop index and option-
ally skipping operations of one loop when the loop
index overshoots.

How much bytes are saved by loop jamming? As
an example, Figure 4 shows an original 19-byte frag-
ment of subroutine INITIALIZE ($B3BA) using loop
jamming. The same fragment without loop jam-
ming, shown in Figure 5, is 20 bytes long. So loop
jamming saved one single byte.

Another example is the loop that is set up at
$A165 in INITCOLD ($A14A). A third example is the
loop set up at $B413 in INITIALIZE ($B3BA). This
loop does not explicitly skip loop indices, thus sav-
ing four more bytes (the CMP and BCS instructions)
on top of the one byte saved by regular loop jam-
ming. Thus, seven bytes are saved in total by loop
jamming.

2.4.2 Sharing Blank Characters

One more technique to save bytes is to let strings
share their leading and trailing blank characters. In
the game there is a header text line of twenty char-
acters that displays one of the strings “LONG RANGE

SCAN,” “AFT VIEW,” or “GALACTIC CHART.” The dis-
play hardware directly points to their location in the
ROM. They are enclosed in blank characters (bytes
of value $00) so that they appear horizontally cen-
tered.

A naive implementation would use 3 × 20 = 60
bytes to store these strings in ROM. In the actual
implementation, however, the trailing blanks of one
header string are reused as leading blanks of the
following header, as shown in Figure 6. By shar-
ing blank characters the required memory is reduced
from 60 bytes to 54 bytes, saving six bytes.

2.4.3 Reusing Interrupt Exit Code

Yet another, rather traditional technique is to reuse
code, of course. Figure 7 shows the exit code of the
Vertical Blank Interrupt handler VBIHNDLR ($A6D1)
at $A715, which jumps into the exit code of the Dis-
play List Interrupt handler DLSTHNDLR ($A718) at
$A74B, reusing the code that restores the registers
that were put on the CPU stack before entering the
Vertical Blank Interrupt handler.

This saves another six bytes (PLA, TAY, PLA, TAX,
PLA, RTI), but spends three bytes (JMP JUMP004), in
total saving three bytes.

2.5 Bugs

There are a few bugs, or let’s call them glitches, in
STAR RAIDERS. This is quite astonishing, given the
complex game and the development tools of 1979,
and is a testament to thorough play testing. The
interesting thing is that the often intense game play
distracts the players’ attention from noticing these
glitches, just like what a skilled parlor magician
would do.

2.5.1 A Starbase Without Wings

When a starbase reaches the lower edge of the graph-
ics screen and overlaps with the Control Panel Dis-
play below (Figure 8 (left), screenshot) and you
nudge the starbase a little bit more downward, its
wings suddenly vanish (Figure 8 (right), screenshot).

The reason is shown in the insert on the right
side of the figure: The starbase is a composite of
three Players (sprites). Their bounding boxes are
indicated by three white rectangles. If the verti-
cal position of the top border of a Player is larger
than a vertical position limit, indicated by the tip
of the white arrow, the Player is not displayed. The
relevant location of the comparison is at $A534 in
GAMELOOP ($A1F3). While the Player of the central
part of the starbase does not exceed this vertical
limit, the Players that form the starbase’s wings do
so, and are thus not rendered.

This glitch is rarely noticed because players do
their best to keep the starbase centered on the
screen, a prerequisite for a successful docking.

2.5.2 Shuffling Priorities

There are two glitches that are almost impossible to
notice (and I admit some twisted kind of pleasure to
expose them, ;-):

• During regular gameplay, the Zylon ships and
the photon torpedoes appear in front of the
cross hairs (Figure 9 (left)), as if the cross hairs
were light years away.

• During docking, the starbase not only appears
behind the stars (Figure 9 (right)) as if the
starbase is light years away, but the transfer
vessel moves in front of the cross hairs!

14

1 B3BA A259 INITIALIZE LDX #89 ; Set 89(+1) GRAPHICS7 rows from DSPLST+5 on
B3BC A90D LOOP060 LDA #$0D ; Prep DL in s t r u c t i o n $0D (one row of GRAPHICS7)

3 B3BE 9D8502 STA DSPLST+5,X ; DSPLST+5,X := one row of GRAPHICS7
B3C1 E00A CPX #10 ;

5 B3C3 B005 BCS SKIP195 ;
B3C5 BDA9BF LDA PFCOLORTAB,X ; Copy PLAYFIELD co l o r tab l e to zero−page tab l e

7 B3C8 95F2 STA PF0COLOR,X ; (loop jamming)
B3CA CA SKIP195 DEX ;

9 B3CB 10EF BPL LOOP060 ;

Figure 4. INITIALIZE Subroutine at $B3BA (Excerpt)

1 B3BA A259 INITIALIZE LDX #89 ; Set 89(+1) GRAPHICS7 rows from DSPLST+5 on
B3BC A90D LOOP060 LDA #$0D ; Prep DL in s t r u c t i o n $0D (one row of GRAPHICS7)

3 B3BE 9D8502 STA DSPLST+5,X ; DSPLST+5,X := one row of GRAPHICS7
B3C1 CA DEX ;

5 B3C2 10F8 BPL LOOP060 ;
B3C4 A209 LDX #9 ;

7 B3C6 BDAABF LOOP060B LDA PFCOLORTAB,X ; Copy PLAYFIELD co l o r tab l e to zero−page tab l e
B3C9 95F2 STA PF0COLOR,X ;

9 B3CB CA DEX ;
B3CC 10F8 BPL LOOP060B ;

Figure 5. INITIALIZE Subroutine Without Loop Jamming (Excerpt)

The reason is the drawing order or “graphics pri-
ority” of the bit-mapped graphics and the Players
(sprites). It is controlled by the PRIOR ($D01B) hard-
ware register.

During regular flight, see Figure 9 (left), PRIOR
($D01B) has a value of $11. This arranges the dis-
played elements in the following order, from front to
back:

• Players 0-4 (photon torpedoes, Zylon ships,
. . .)

• Bit-mapped graphics (stars, cross hairs)

• Background.

This arrangement is fine for the stars as they are
bit-mapped graphics and need to appear behind the
photon torpedoes and the Zylon ships, but this ar-
rangement applies also to the cross hairs – causing
the glitch.

During docking, see Figure 9 (right), PRIOR

($D01B) has a value of $14. This arranges the dis-
played elements the following order, from front to
back:

• Player 4 (transfer vessel)

• Bit-mapped graphics (stars, cross hairs)

• Players 0-3 (starbase, . . .)

• Background.

This time the arrangement is fine for the cross
hairs as they are bit-mapped graphics and need to
appear in front of the starbase, but this arrangement
also applies to the stars. In addition, the Player of
the white transfer vessel correctly appears in front
of the bit-mapped stars, but also in front of the bit-
mapped cross hairs.

Fixing these glitches is hardly possible, as the
display hardware does not allow for a finer control
of graphics priorities for individual Players.

2.6 A Mysterious Finding

A simple instruction at location $A175 contained
the most mysterious finding in the game’s code.
The disassembler reported the following instruction,
which is equivalent to STA $0067,X. (ISVBISYNC has
a value of $67.)

A175 9D6700 STA ISVBISYNC,X

The object code assembled from this instruction
is unusual as its address operand was assembled
as a 16-bit address and not as an 8-bit zero-page
address. Standard 6502 assemblers would always
generate shorter object code, producing 9567 (STA
$67,X) instead of 9D6700 and saving a byte.

In my reverse engineered source code, the only
way to reproduce the original object code was the
following:

15

;∗∗∗ Header text o f Long−Range Scan view (share s spaces with f o l l ow ing header) ∗

2 A0F8 00006C6F LRSHEADER .BYTE $00 , $00 , $6C , $6F , $6E , $67 , $00 , $72 ; ‘ ‘ LONG RANGE SCAN’ ’
A0FC 6E670072

4 A100 616E6765 .BYTE $61 , $6E , $67 , $65 , $00 , $73 , $63 , $61
A104 00736361

6 A108 6E .BYTE $6E

8 ;∗∗∗ Header text o f Aft view (share s spaces with f o l l ow ing header) ∗∗∗∗∗∗∗∗∗∗∗∗∗

A109 00000000 AFTHEADER .BYTE $00 , $00 , $00 , $00 , $00 , $00 , $61 , $66 ; ‘ ‘ AFT VIEW ‘ ‘
10 A10D 00006166

A111 74007669 .BYTE $74 , $00 , $76 , $69 , $65 , $77 , $00 , $00
12 A115 65770000

A119 00 .BYTE $00
14

;∗∗∗ Header text o f Ga lac t i c Chart view ∗∗

16 A11A 00000067 GCHEADER .BYTE $00 , $00 , $00 , $67 , $61 , $6C , $61 , $63 ; ‘ ‘ GALACTIC CHART ‘ ‘
A11E 616C6163

18 A122 74696300 .BYTE $74 , $69 , $63 , $00 , $63 , $68 , $61 , $72
A126 63686172

20 A12A 74000000 .BYTE $74 , $00 , $00 , $00

Figure 6. Header Texts at $A0F8

A6D1 A9FF VBIHNDLR LDA #$FF ; Star t o f Ve r t i c a l Blank In t e r rupt handler
2 . . .

A715 4C4BA7 SKIP046 JMP JUMP004 ; End of Ve r t i c a l Blank In t e r rupt handler
4 . . .

A718 48 DLSTHNDLR PHA ; Star t o f Display L i s t In t e r rupt handler
6 . . .

A74B 68 JUMP004 PLA ; Restore r e g i s t e r s
8 A74C A8 TAY ;

A74D 68 PLA ;
10 A74E AA TAX ;

A74F 68 PLA ;
12 A750 40 RTI ; End of Display L i s t In t e r rupt Handler

Figure 7. VBIHNDLR and DLSTHNDLR Handlers Share Exit Code

1 ; HACK: Fake STA ISVBISYNC,X with 16b addr
A175 9D .BYTE $9D

3 A176 6700 .WORD ISVBISYNC

I speculated for a long time whether this strange
assembler output indicated that the object code of
the original ROM cartridge was produced with a
non-standard 6502 assembler. I have heard that
Atari’s in-house development systems ran on PDP-
11 hardware. Luckily, the month after I finished
my reverse engineering effort, the original STAR
RAIDERS source code re-surfaced.7 To my aston-
ishment it uses exactly the same “hack” to repro-
duce the three-byte form of the STA ISVBISYNC,X

instruction:

1 A175 9D .BYTE $9D ; STA ABS,X
A176 67 00 .WORD PAGE0 ; STA PAGE0,X (ABSOLUTE)

Unfortunately the comments do not give a clue
why this pattern was chosen. After quite some time

it made click: The instruction STA ISVBISYNC,X is
used in a loop which iterates the CPU’s X register
from 0 to 255 to clear memory. By using this instruc-
tion with a 16-bit address (“indexed” mode operand)
memory from $0067 to $0166 is cleared. Had the
code been using the same operation with an 8-bit ad-
dress (“indexed, zero-page” mode operand), memory
from $0067 to $00FF would have been cleared, then
the indexed address would have wrapped back to
$0000 clearing memory $0000 to $0066, effectively
overwriting already initialized memory locations.

2.7 Documenting Star Raiders

Right from the start of reverse engineering STAR

RAIDERS I not only wanted to understand how the
game worked, but I also wanted to document the re-
sult of my effort. But what would be an appropriate
form?

First, I combined the emerging memory map file
with the fledgling assembly language source code in

7https://archive.org/details/AtariStarRaidersSourceCode

unzip pocorgtfo13.pdf StarRaidersOrig.pdf

16

Figure 8. A Starbase’s Wings Vanish

Figure 9. Photon torpedo in front of cross hairs and a starbase behind the stars!

order to work with just one file. Then, I switched
the source code format to that of MAC/65, a well-
known and powerful macro assembler for the Atari
8-bit Home Computer System. I also planned, at
some then distant point in the future, to assemble
the finished source code with this assembler on an
8-bit Atari.

Another major influence on the emerging docu-
mentation was the Atari BASIC Source Book, which
I came across by accident8. It reproduced the com-
plete, commented assembly language source code of
the 8 KB Atari BASIC interpreter cartridge, a truly
non-trivial piece of software. But what was more:
The source code was accompanied by several chap-
ters of text that explained in increasing detail its
concepts and architecture, that is, how Atari BASIC
actually worked. Deeply impressed, I decided on
the spot that my reverse engineered STAR RAIDERS
source code should be documented at the same level
of detail.

The overall documentation structure for the
source code, which I ended up with was fourfold: On
the lowest level, end-of-line comments documented
the functionality of individual instructions. On the
next level, line comments explained groups of in-
structions. One level higher still, comments com-

posed of several paragraphs introduced each sub-
routine. These paragraphs provided a summary of
the subroutine’s implementation and a description
of all input and output parameters, including the
valid value ranges, if possible. On the highest level,
I added the memory map to the source code as a
handy reference. I also planned to add some chap-
ters on the game’s general concepts and overall ar-
chitecture, just like the Atari BASIC Source Book
had done. Unfortunately, I had to drop that idea
due to lack of time. I also felt that the detailed sub-
routine documentation was quite sufficient. How-
ever, I did add sections on the 3D coordinate system
and the position and velocity vectors to the source
code as a tip of the hat to the Atari BASIC Source
Book.

After I was well into reverse engineering STAR
RAIDERS, slowly adding bits and pieces of informa-
tion to the raw disassembly of the STAR RAIDERS

ROM and fleshing out the ever growing documen-
tation, I started to struggle with establishing a con-
sistent and uniform terminology for the documenta-
tion (Is it “asteroid,” “meteorite,” or “meteor”? “Ex-
plosion bits,” “explosion debris,” or “explosion frag-
ments”? “Gun sights” or “cross hairs”?) A look into
the STAR RAIDERS instruction manual clarified only

8The Atari BASIC Source Book by Wilkinson, O’Brien, and Laughton. A COMPUTE! publication.

17

a painfully small amount of cases. Incidentally, it
also contradicted itself as it called the enemies “Cy-
lons” while the game called them “Zylons,” such as
in the message “SHIP DESTROYED BY ZYLON FIRE.”

But I was not only after uniform documenta-
tion, I also wanted to unify the symbol names of
the source code. For example, I had created a
hodge-podge of color-related symbol names, which
contained fragments such as “COL,” “CLR,” “COLR,”
and “COLOR.” To make matters worse, color-related
symbol names containing “COL” could be confused
with symbol names related to (pixel) columns. The
same occurred with symbol names related to Players
(sprites), which contained fragments such as “PL,”
“PLY,” “PLYR,” “PLAY,” and “PLAYER,” or with sym-
bol names of lookup tables, which ended in “TB,”
“TBL,” “TAB,” and “TABLE,” and so on. In addition
to inventing uniform symbol names I also did not
want to exceed a self-imposed symbol name limit of
15 characters. So I refactored the source code with
the search-and-replace functionality of the text edi-
tor over and over again.

18

I noticed that I spent more and more time
on refactoring the documentation and the symbol
names and less time on adding actual content. In
addition, the actual formatting of the emerging doc-
umented source code had to be re-adjusted after ev-
ery refactoring step. Handling the source code be-
came very unwieldy. And worst of all: How could
I be sure that the source code still represented the
exact binary image of the ROM cartridge?

The solution I found to this problem eventually
was to create an automated build pipeline, which
dealt with the monotonous chores of formatting and
assembling the source code, as well as comparing the
produced ROM cartridge image with a reference im-
age. This freed time for me to concentrate on the
actual source code content. Yet another incarnation
of “separation of form and content,” the automated
build pipeline was always a pleasure to watch work-
ing its magic. (Mental note: I should have created
this pipeline much earlier in the reverse engineering
effort.) These are the steps of the automated build
pipeline:

1. The pipeline starts with a raw, documented as-
sembly language source code file. It is already
roughly formatted and uses a little propri-
etary markup, just enough to mark up sections
of meta-comments that are to be removed in
the output as well as subroutine documen-
tation containing multiple paragraphs, num-
bered, and unnumbered lists. This source code
file is fed to a pre-formatter program, which
I implemented in Java. The pre-formatter re-
moves the meta-comments. It also formats the
entries of the memory map and the subroutine

documentation by wrapping multi-line text at
a preset right margin, out- and indenting list
items, numbering lists, and vertically aligning
parameter descriptions. It also corrects the
number of trailing asterisks in line comments,
and adjusts the number of asterisks of the box
headers that introduce subroutine comments,
centering their text content inside the asterisk
boxes.

2. The output of the pre-formatter from step 1 is
fed into an Atari 6502 assembler, which I also
wrote in Java. It is available as open-source
on GitHub.9 Why write an Atari 6502 assem-
bler? There are other 6502 assemblers readily
available, but not all produce object code for
the Atari 8-bit Home Computer System, not
all use the MAC/65 source code format, and
not all of them can be easily tweaked when
necessary. The output of this step is both an
assembler output listing and an object file.

3. The assembler output listing from step 2 is the
finished, formatted, reverse engineered STAR

RAIDERS source code, containing the docu-
mentation, the source code, and the object
code listing.

4. The assembler output listing from step 2 is fed
into a symbol checker program, which I again
wrote in Java. It searches the documenta-
tion parts of the assembler output listing and
checks if every symbol, such as “GAMELOOP,” is
followed by its correct hex value, “($A1F3).” It
reports any symbol with missing or incorrect
hex values. This ensures further consistency
of the documentation.

5. The object file of step 2 is converted by yet an-
other program I wrote in Java from the Atari
executable format into the final Atari ROM
cartridge format.

6. The output from step 5 is compared with a
reference binary image of the original STAR
RAIDERS 8 KB ROM cartridge. If both im-
ages are the same, then the entire build was
successful: The raw assembly language source
code really represents the exact image of the
STAR RAIDERS 8 KB ROM cartridge

9git clone https://github.com/lwiest/Atari6502Assembler

unzip pocorgtfo13.pdf Atari6502Assembler.zip

19

Typical build times on my not-so-recent Win-
dows XP box (512 MB) were 15 seconds.

For some finishing touches, I ran a spell-checker
over the documented assembly language source code
file from time to time, which also helped to improve
documentation quality.

2.8 Conclusion

After quite some time, I achieved my goal to create a
reverse engineered, complete, and fully documented
assembly language source code of STAR RAIDERS.
For final verification, I successfully assembled it with
MAC/65 on an Atari 800 XL with 64 KB RAM (em-
ulated with Atari800Win Plus). MAC/65 is able to
assemble source code larger than the available RAM
by reading the source code as several chained files.
So I split the source code (560 KB) into chunks of 32
KB and simply had the emulator point to a hard disk
folder containing these files. The resulting assembler
output listing and the object file were written back
to the same hard disk folder. The object file, after
being transformed into the Atari cartridge format,
exactly reproduced the original STAR RAIDERS 8 KB
ROM cartridge.

2.9 Postscript

I finished my reverse engineering effort in Septem-
ber 2015. I was absolutely thrilled to learn that in
October 2015 scans of the original STAR RAIDERS

source code re-surfaced. To my delight, inspection
of the original source code confirmed the findings of
my reverse engineered version and caused only a few
trivial corrections. Even more, the documentation
of my reverse engineered version added a substan-
tial amount of information – from overall theory of
operation down to some tricky details – to the un-
derstanding of the often sparsely commented origi-
nal (quite expected for source code never meant for
publication).

20

21

00 7f 47 47 47 47 47 7f 00 30 10 10 10 38 38 38 00 78 08 08 78 40 40

08 08 78 00 78 48 40 40 7e 42 7e 00 7c 44 04 1c 10 10 10 00 38 28 28

38 00 00 38 38 38 80 80 80 80 80 80 80 ff 00 3c 20 20 78 60 60 7c 00

18 00 18 7e db 99 db 7e 18 66 66 66 66 66 2c 38 30 00 7c 44 44 7c 68

18 18 18 18 fc 8c 8c 80 80 80 84 fc 00 00 00 00 00 00 00 ff 80 80 80

98 80 b6 80 8c 80 ff 80 8e 80 b8 80 9c 80 ff 80 b0 98 be 98 b0 80 ff

00 61 66 74 00 76 69 65 77 00 00 00 00 00 00 67 61 6c 61 63 74 69 63

07 07 07 80 46 1f 0d 46 71 09 06 06 41 80 02 a9 00 8d 0f d2 85 66 85

9d 00 d4 e0 0f b0 03 9d 00 d2 9d 00 d3 9d 67 00 e8 d0 ea ca 9a d8 a9

00 02 a9 a6 8d 23 02 a9 a7 8d 01 02 a9 04 8d 02 d3 a9 11 8d 1b d0 a9

f1 ad a9 20 85 71 a9 80 8d 02 d4 a9 02 8d 03 d4 a9 3e 8d 00 d4 a9 00

c0 8d 0e d4 a5 67 f0 fc a9 00 85 67 a5 7a f0 20 a2 04 e8 bc 5b 0c b9

00 85 7a a5 c0 30 2d a6 79 86 7a bd f9 0b 9d 5b 0c a8 b9 00 08 85 68

91 68 ca e0 04 d0 d7 a5 66 10 0e a9 00 8d e3 17 8d e4 17 8d bc 17 8d

0c 99 00 07 c8 ca 10 f9 ac 5d 0c ae bf 0c 99 00 06 c8 ca 10 f9 ac 5c

10 f9 ad 90 0c c9 01 a4 e8 ae fd 0b 8e 5f 0c ad f2 0c 85 6a 8d c1 0c

a4 e7 ae fc 0b 8e 5e 0c ad f1 0c 85 6a 8d c0 0c b9 e4 b8 b0 03 2d 0a

0c ad f0 0c 85 6a 8d bf 0c b9 e4 b8 b0 03 2d 0a d2 9d 00 06 e8 c8 c6

9d 00 05 e8 c8 c6 6a 10 f4 a4 e4 ae f9 0b 8e 5b 0c ad ee 0c 85 6a 8d

0c 8d 01 d0 ad 2c 0c 8d 02 d0 ad 2d 0c 8d 03 d0 ad 2e 0c 8d 07 d0 18

19 85 6d a4 79 84 6e 18 98 aa 69 31 a8 20 9b b6 98 aa a4 6e 20 9b b6

98 aa a4 6e 20 9b b6 88 10 eb a6 79 e0 05 b0 05 bd 8c 0c f0 19 38 bd

09 ca 10 db a6 79 e0 10 d0 02 a2 04 8a a8 a9 00 85 6b b9 66 0b 10 09

40 0a b9 ad 09 65 6b 99 ad 09 98 18 69 31 c9 90 90 ce ca 10 c4 a0 04

ad 09 49 ff 9d 40 0a 8a 18 69 31 aa c6 6a 10 e0 88 10 d7 a5 d0 c9 02

35 0b 85 6a a9 00 fd a2 0a 85 6b 4c 7d a4 bd 35 0b 85 6a bd a2 0a 85

fd 71 0a 85 6b 4c a4 a4 bd 04 0b 85 6a bd 71 0a 85 6b 20 21 aa 20 fb

79 bd 40 0a bc ad 09 d0 02 49 ff a8 b9 e9 0d 20 1e b7 bd 71 0a bc de

a5 a9 00 95 e4 9d ee 0c 24 d0 10 0b e0 03 90 eb ad 0a d2 a0 f2 30 2b

db be 9d 2a 0c ad fb 0b 18 69 04 9d f9 0b ac 42 0a a5 76 29 0f 85 6b

a9 0f 85 6a 1d 8c 0c 4a a8 b9 2f be 95 e4 b9 7f be 9d ee 0c 98 4a 4a

99 ee 00 4c e7 a4 a0 af a6 81 a5 8b f0 0c c6 8b a0 4f 29 20 f0 04 a2

20 64 b7 49 ff c9 10 90 02 a9 0f 0a 29 1c 05 72 a8 b9 90 ba 85 6a bd

4c 9b a6 20 fe af ad 00 d3 a8 29 03 aa bd f5 ba 85 c9 98 4a 4a 29 03

d0 d0 03 20 bf a7 ae 5c 09 a5 bf 30 05 aa 09 80 85 bf b5 e9 d0 0b 8a

0d 49 01 dd ad 09 f0 06 aa bd cf be 85 ca 20 e6 ac 20 79 aa a5 7b d0

a4 0a c8 c0 02 b0 40 20 e1 ae a0 02 20 6b ac a2 7f a5 81 d0 1e a2 0a

a2 40 86 e3 a2 ff 86 8a a9 00 85 eb a9 02 85 be a2 01 20 6f b8 a2 0a

02 b0 06 a9 00 a8 4c 5e a1 e6 62 a5 62 29 03 85 62 4c 5a a1 20 04 b8

f6 ad 0a d2 24 8a 50 07 30 04 29 72 09 40 aa a5 d0 c9 03 90 02 a2 a0

a5 66 30 09 e6 66 10 05 a0 00 4c 5c a1 4c 4b a7 48 8a 48 98 48 a9 e0

ca 10 f8 ad 08 d0 0d 09 d0 0d 0a d0 0d 0b d0 85 83 ad 0f d0 85 82 68

ca 68 40 99 a4 00 e8 88 10 0e 20 82 a7 a9 05 85 a2 2c 95 09 70 09 a0

a5 b9 00 08 85 68 b9 64 08 85 69 a5 a6 4a 4a 85 6a a5 a6 29 03 a8 b9

d0 d0 60 ae 5c 09 a4 a2 c0 05 b0 24 a5 a0 85 a6 b9 6e bf 0a 85 6c 90

e6 a2 60 c0 0a 90 f9 b5 e9 f0 3c bd 71 0a bc de 09 f0 08 c9 0c 90 0a

0a d0 08 c9 05 90 0a a9 04 10 06 c9 fa b0 02 a9 fa 18 69 4d 85 a1 a9

10 f7 18 a5 68 69 28 85 68 90 02 e6 69 ca 10 e7 ae 5c 09 c8 a5 88 f0

1c a5 a1 c9 4b 90 21 c9 4f b0 1d a9 aa 8d 9e 1c 8d a4 1c bd 40 0a c9

f0 61 a5 70 c9 fe b0 5c c9 80 90 03 20 b4 a9 a9 03 8d 5c 09 a9 90 8d

38 ad 2d 0c e9 7d 18 65 c4 29 7f 85 8f a5 62 f0 11 ad 0a d2 a4 d0 f0

0a d2 09 10 25 c6 8d cb 0b 60 98 30 11 a9 ff 85 c0 a2 00 20 a6 b3 20

8f 85 8d a5 8e 85 8c 4a 29 07 aa bd b3 bf 85 c7 a4 92 84 90 a9 00 85

ad 0a d2 25 c7 99 42 0a 98 18 69 31 a8 c9 93 90 e5 ad 42 0a 09 71 8d

b2 60 a2 01 20 6f b8 a0 17 a9 00 85 71 85 c0 a9 10 85 79 a9 00 85 c1

ed 85 75 8d 5c 09 4c 23 b2 c6 c2 10 68 a9 01 85 c1 a9 30 85 79 a9 03

bb 9d a2 0a 20 be b7 8a a8 a9 05 85 6e 18 a5 68 69 50 85 68 9d d3 0a

9d ad 09 a9 63 9d f9 0b 9d 2a 0c 20 c1 ac ca e0 11 b0 02 a2 30 c6 6e

40 0a 4a 85 69 bd d3 0a 6a 85 68 4c 52 aa 38 a9 00 fd d3 0a 85 68 a9

06 85 6b 84 6a e6 6d 06 6a 26 6b 90 03 a9 ff 60 c6 6e 10 df a4 6d b9

90 02 a9 00 20 ca ae 8d cb 0b 8d cc 0b 38 ad 2d 0c fd 2a 0c 20 ca ae

8a 4a a8 b9 c8 00 a4 d0 f0 05 49 ff 18 69 01 18 75 b4 10 02 a9 00 c9

d0 1b a4 62 b9 85 bf ae a4 0a 10 02 29 7f 8d ca 0b 09 80 ae 73 0a 10

d2 c9 04 b0 1e a9 60 8d 8e 0c a2 02 20 64 b7 a9 3c 85 eb a9 88 8d 68

d0 42 a5 e9 05 ea 29 01 a4 90 d9 c9 08 b0 ba a9 ff 95 e9 ad 0a d2 29

ad 09 ad 0a d2 25 c7 9d a2 0a 69 13 9d 71 0a 09 71 9d 40 0a 20 be b7

95 a8 d6 aa 10 24 a9 78 95 aa a5 62 ac 0a d2 c0 30 90 01 4a 4a 95 b8

32 a4 a7 c0 31 b0 13 b9 b8 00 4a b9 40 0a b0 06 c9 0a 90 0e b0 04 c9

e0 06 90 d2 a6 a7 a4 a7 b5 b2 d5 ac f0 08 b0 04 f6 b2 90 02 d6 b2 86

a7 ad 8e 0c d0 0b a5 eb d0 06 a5 be f0 03 c6 be 60 18 bd a2 0a 69 02

50 c9 20 b0 de 8c 68 0b a9 00 8d 8e 0c 8d 2c 0c a9 3e 85 eb a2 02 a4

e9 30 9d 2a 0c ad 0a d2 29 0f 79 f9 0b 4a e9 10 9d f9 0b 20 af ac ad

0b ca e0 10 d0 c5 60 b9 ad 09 9d ad 09 b9 40 0a 9d 40 0a b9 d3 0a 9d

0a 9d a2 0a b9 04 0b 9d 04 0b b9 35 0b 9d 35 0b 60 a5 7b f0 fb a5 d0

a9 40 8d 8c 0c a9 ff a6 90 bc c9 08 30 02 a9 00 85 e9 85 ea 85 eb 85

20 b0 03 ee d5 0a ad 2c 0c 38 e9 78 c9 10 b0 22 ad fb 0b 38 e9 68 c9

0a 05 71 f0 10 a5 75 c9 02 90 05 a0 1f 20 23 b2 a9 00 85 75 60 24 75

e6 a9 50 8d 90 0c a9 01 8d b1 09 8d e2 09 8d 13 0a 8d a6 0a 8d 9b 0b

85 ed 60 ad b1 09 d0 fa a2 0c 20 a6 b3 a0 21 20 23 b2 a2 05 bd 8b bb

81 8d 9b 0b a9 01 8d cc 0b 85 75 4c 7b b0 78 85 6a ad 0b d4 c9 7c 90

69 a9 00 a8 85 68 85 a3 85 7a 91 68 c8 d0 fb e6 69 a4 69 c0 20 a8 90

03 b0 18 60 b5 ec c9 e8 b0 f9 ac 5c 09 84 89 a9 0c a4 a3 84 86 f0 02

bd 73 bf 9d 74 0a a9 ff 95 ec 9d a5 0a a9 00 9d 8f 0c 9d 43 0a 9d 07

69 0b a9 00 9d 9a 0b 9d cb 0b a2 02 20 6f b8 a2 00 8a d0 06 a5 e1 c9

21 bf 8d 04 d2 60 a0 80 b0 04 49 ff a0 00 84 6a c9 08 90 02 a9 07 a8

c9 06 b0 47 aa bd 92 09 0a 30 eb a5 eb c9 1e a9 80 bc 14 bf 90 17 e0

1d 92 09 9d 92 09 84 65 2c 95 09 50 07 a9 00 85 7e 20 0d ae a0 52 20

f3 b5 82 29 07 f0 ed 4a c9 03 d0 01 4a a8 b9 e9 00 f0 e1 a5 d0 f0 02

d9 75 bf b0 c2 d9 7d bf 90 bd a4 6b 38 a9 ff f5 ec 85 e2 c9 0f 90 05

60 f0 3f a9 00 85 86 a6 90 de c9 08 10 13 a9 00 9d c9 08 38 a5 cb e9

40 78 00 78 08 08 7c 0c 0c 7c 00 60 60 60 6c 7c 0c 0c 00 78 40 40 78

28 7c 6c 6c 7c 00 7c 44 44 7c 0c 0c 0c 00 00 00 00 00 00 00 00 38 38

00 66 99 99 99 66 00 00 00 00 00 7e 00 00 00 00 00 18 18 18 7e 18 18

68 6c 6c 00 1c 3e 63 5d 63 3e 1c 00 46 46 44 7c 64 66 66 fe 92 10 18

80 80 80 80 80 80 00 00 00 00 00 00 00 80 80 aa 9c be 9c aa 80 ff 80

ff 00 00 6c 6f 6e 67 00 72 61 6e 67 65 00 73 63 61 6e 00 00 00 00 00

63 00 63 68 61 72 74 00 00 00 60 46 1a a1 f0 47 35 0d 07 07 07 07 07

85 62 85 63 a9 03 8d 0f d2 a0 2f a9 ff 84 65 85 64 a9 00 aa 9d 00 d0

a9 02 20 0f ae a9 51 8d 16 02 a9 a7 8d 17 02 a9 d1 8d 22 02 a9 18 8d

a9 03 8d 1d d0 20 ba b3 a2 0a 20 45 b0 a5 64 29 80 a8 a2 5f a9 08 20

00 8d 07 d4 a9 10 85 79 a6 62 bc 0c bf 20 23 b2 a9 40 8d 0e d2 58 a9

b9 00 08 85 68 b9 64 08 85 69 bc 8c 0c bd bd 0c 91 68 e4 7a 90 e6 a9

68 b9 64 08 85 69 bd 2a 0c 4a 4a 9d 8c 0c a8 b1 68 9d bd 0c 1d ee 0c

8d bb 17 a9 00 ac 5f 0c ae c1 0c 99 00 03 c8 ca 10 f9 ac 5e 0c ae c0

5c 0c ae be 0c 99 00 05 c8 ca 10 f9 ac 5b 0c ae bd 0c 99 00 04 c8 ca

0c b9 e4 b8 b0 03 2d 0a d2 9d 00 03 c8 e8 c6 6a 10 ef ad 8f 0c c9 01

0a d2 9d 00 07 e8 c8 c6 6a 10 ef ad 8e 0c c9 01 a4 e6 ae fb 0b 8e 5d

c6 6a 10 ef a4 e5 ae fa 0b 8e 5c 0c ad ef 0c 85 6a 8d be 0c b9 b1 b9

8d bd 0c b9 b1 b9 9d 00 04 e8 c8 c6 6a 10 f4 ad 2a 0c 8d 00 d0 ad 2b

18 69 02 8d 06 d0 69 02 8d 05 d0 69 02 8d 04 d0 24 d0 30 3a a5 c8 f0

b6 88 10 eb a5 c9 f0 19 85 6d a4 79 84 6e 18 98 aa 69 62 a8 20 9b b6

bd d3 0a e5 70 9d d3 0a bd 40 0a e5 c1 9d 40 0a bd ad 09 e9 00 9d ad

09 49 7f 18 69 01 b0 02 c6 6b 18 79 d3 0a 99 d3 0a b9 40 0a 65 6b 99

04 98 aa a9 02 85 6a bd ad 09 c9 02 90 10 0a a9 00 9d ad 09 b0 05 fe

02 b0 5c a6 79 a9 ff bc ad 09 c4 d0 f0 4b bd 0f 0a d0 12 38 a9 00 fd

85 6b 20 21 aa 20 1e b7 bd de 09 d0 12 38 a9 00 fd 04 0b 85 6a a9 00

fb b6 ca 10 a6 20 62 b1 24 d0 50 31 a2 31 20 6f a7 2c 96 09 70 27 a6

de 09 d0 02 49 ff a8 b9 e9 0d 20 fb b6 ca 10 db a2 05 ca 10 03 4c 79

2b d5 e9 f0 e0 70 f3 bc 40 0a 24 7b 50 1e e0 02 b0 16 ad 2c 0c 18 7d

6b 98 bc f9 0b c0 cc b0 af a4 d0 f0 02 49 ff c9 20 b0 a5 c9 10 90 02

4a 4a a8 b9 d1 bf c0 08 d0 03 4d 0a d2 a4 6a 59 db bf 45 6b bc df b8

a2 42 a0 60 84 f4 86 f6 a6 79 bd 40 0a a4 d0 c0 01 d0 09 c9 f0 b0 03

bd 2a 0c 29 03 a8 b9 b0 ba 25 6a 9d ee 0c ca e0 05 b0 ca 24 64 50 03

03 aa bd f5 ba 85 c8 20 3d af 20 29 ae 2c 95 09 70 40 a5 7e f0 3c a5

8a 49 01 aa b5 e9 d0 03 ae 5c 09 8e 5c 09 a5 7c f0 13 a5 d0 c9 02 b0

d0 5c a5 eb f0 58 ac 42 0a c8 c0 02 b0 50 ac 73 0a c8 c0 02 b0 48 ac

0a 20 45 b0 a0 23 a2 08 20 0a b1 a2 5f a0 80 a9 08 20 f1 ad 20 0d ae

0a 20 a8 ae a4 63 ad 1f d0 49 ff 29 03 85 63 f0 1a 88 10 17 85 66 c9

b8 20 9b a8 20 16 b2 20 e4 b4 4c f3 a1 a9 ff 85 67 a9 e0 8d 09 d4 a6

a0 86 f6 a2 08 b5 ee 9d 12 d0 ca 10 f8 8d 1e d0 20 ab b2 e6 77 d0 0d

e0 ac 0b d4 c0 60 f0 02 a9 a0 8d 09 d4 a2 04 8d 0a d4 b5 f7 9d 16 d0

68 a8 68 aa 68 40 48 a9 00 8d 0e d2 a9 40 8d 0e d2 ad 09 d2 09 c0 85

a0 02 bd f9 ba c9 fe d0 e4 60 a9 55 85 6b a5 a4 85 6e 29 7f 85 a4 a4

b9 b0 ba 25 6b a4 6a 11 68 91 68 24 6e 10 04 e6 a5 d0 02 e6 a6 c6 a4

90 0d a9 81 85 a4 a5 a1 85 a5 a9 aa 20 84 a7 e6 a6 a5 6c d0 e8 e6 a1

0a a9 0b 10 06 c9 f5 b0 02 a9 f5 18 69 83 85 a0 bd a2 0a 49 ff bc 0f

a9 00 85 a2 a9 36 85 68 a9 1b 85 69 a2 0e a0 06 b1 68 29 55 91 68 88

f0 04 c6 88 d0 39 a5 a0 c9 81 90 33 c9 85 b0 2f a9 aa 8d fe 1b 8d 04

c9 0c b0 0e a0 a0 8c 40 1d 8c 68 1d 8c 42 1d 8c 6a 1d 84 a3 60 a4 c0

8d 8f 0c 85 ec a9 1f 8d 43 0a 38 ad fc 0b e9 77 18 65 c5 29 7f 85 8e

f0 06 8d 2d 0c 8d fc 0b c9 10 b0 14 ad 0a d2 09 10 25 c6 8d 9a 0b ad

20 a7 b1 a0 1b 4c 8d a9 c6 91 f0 05 a2 02 4c 6f b8 a0 19 20 87 a9 a5

85 7b be c9 08 10 2e a9 ff 85 7b a0 00 a9 00 99 68 0b a9 01 99 af 09

8d 42 0a a2 02 4c be b7 f0 0e a9 ff 85 8b a2 06 20 a6 b3 a0 75 20 23

c1 85 73 85 8a 8d 8f 0c 85 80 c0 17 f0 04 85 e9 85 ea 85 eb 85 ec 85

03 85 c2 a6 c3 a9 12 85 69 ad 0a d2 29 03 a8 b9 3a bb 9d 71 0a b9 3e

0a a5 69 69 00 85 69 9d 40 0a a9 00 9d 66 0b 9d 97 0b 9d c8 0b a9 01

6e 10 c7 86 c3 60 a9 00 85 6d a9 07 85 6e 46 6b 66 6a a5 d0 d0 0f bd

a9 00 fd 40 0a 4a 85 69 66 68 06 6d 38 a5 6a e5 68 a8 a5 6b e5 69 90

b9 e9 0d 60 a5 c0 05 7b d0 f9 a5 86 f0 30 a6 89 38 bd f9 0b ed fc 0b

ae 8d 9a 0b 38 ad 2e 0c fd 2a 0c 20 ca ae 8d 9b 0b a2 03 d6 ba 10 27

c9 10 90 02 a9 0f 95 b4 c9 08 90 02 49 0f 0a 95 ba ca 10 d2 ad 8e 0c

10 02 29 7f 8d 99 0b a5 76 29 03 f0 2e a5 e6 f0 04 a5 eb d0 25 ad 0a

68 0b a9 00 8d 2c 0c 8d 99 0b 8d ca 0b 60 a5 a7 49 01 85 a7 aa b5 e9

29 07 a8 b9 89 bf 9d 8c 0c a5 62 f0 03 b9 91 bf 95 a8 a9 01 95 aa 9d

b7 bd 40 0a c9 20 b0 11 bd ad 09 f0 08 b5 e4 f0 08 c9 29 f0 04 a9 00

b8 b5 a8 2c 0a d2 10 02 49 0f 95 ac e8 e8 e0 06 90 f1 a6 a7 b5 a8 d0

c9 f5 b0 04 b9 ad 09 4a a9 0f b0 02 a9 00 95 ac 18 98 69 31 a8 e8 e8

86 6a aa bd 99 bf a6 6a 99 66 0b 98 18 69 31 a8 e8 e8 e0 06 90 dc a6

02 c9 05 b0 f5 a0 d0 bd ad 09 4a bd 40 0a b0 08 49 ff a4 62 f0 e4 a0

a4 a7 84 bf 4c af ac a9 80 85 73 a2 30 86 79 ad 0a d2 29 0f 79 2a 0c

ad 0a d2 29 87 9d 66 0b ad 0a d2 29 87 9d 97 0b ad 0a d2 29 87 9d c8

9d d3 0a b9 de 09 9d de 09 b9 71 0a 9d 71 0a b9 0f 0a 9d 0f 0a b9 a2

d0 d0 05 a9 14 8d 1b d0 a9 02 8d 5c 09 a9 30 8d 8e 0c a9 20 8d 8d 0c

85 7b 30 0a a0 02 20 6b ac a2 0a 4c a8 ae ad 42 0a d0 0a ad d5 0a c9

c9 10 b0 18 ad 42 0a c9 02 b0 11 ad af 09 2d 11 0a 49 01 05 70 0d a4

75 70 0d 30 42 a5 75 d0 f5 c6 75 a0 1c 4c 23 b2 a2 00 86 65 a4 d1 d0

0b a9 10 8d 44 0a a9 00 8d 75 0a a9 87 8d 6a 0b a9 81 85 75 8d cc 0b

bb 9d 92 09 ca 10 f7 a9 89 a2 03 9d 55 09 ca 10 fa a9 07 8d 6a 0b a9

90 f9 b9 62 ba c8 10 02 a9 0d 9d 80 02 e8 c6 6a d0 f0 58 60 a9 10 85

90 f2 60 a5 84 ac 10 d0 84 84 d0 0e 84 66 a6 c0 d0 08 a6 87 c9 01 f0

02 a9 00 85 88 84 84 2c 92 09 70 e1 30 05 8a 49 01 85 87 8a 9d e1 09

07 0b 9d 12 0a 9d 38 0b a9 01 9d b0 09 9d d6 0a a5 d0 4a 6a 09 66 9d

c9 18 b0 18 a0 07 bd 20 bf 99 da 00 e8 88 10 f6 bd 20 bf 8d 08 d2 bd

a8 a5 6a 19 c9 bf 60 24 64 30 57 a6 62 ad 0a d2 dd 10 bf b0 4d 29 07

e0 03 d0 05 2c 96 09 70 0e e0 04 d0 05 2c 95 09 70 05 a9 c0 bc 1a bf

20 23 b2 a2 12 20 a6 b3 60 a2 02 ca 10 01 60 bd 8f 0c d0 f7 b5 ec f0

02 a9 ff 85 6c 59 40 0a c9 10 90 02 a9 0f 4a 84 6b a8 a5 6c 5d 43 0a

05 b9 8c 0c c9 80 a9 00 85 88 95 ec b0 4b 99 e9 00 b9 8c 0c f0 43 c9

e9 03 85 cb a5 cc e9 00 85 cc 60 18 a5 cb 69 06 85 cb a5 cc 69 00 85

3

PoC GTFO

Самиздат

a b

c

✃ ✃

Cut Here if Printing on A4 Cut Here if Printing on A4

9
6

cc a2 01 fe 50 09 bd 50 09 c9 4a 90 08 a9 40 9d 50 09 ca 10 ee 20 6b ac a2 7f bd c9 08 30 02 d0 0a ca 10 f6 a0 3f a2 00 20 21 b1 60 a5 ca f0 3e a2 14 85 6a a9 00 85 66 85 ca a9 11 8d 1b d0 bd be ba c5 6a f0 08 ca 10 f6 a0 10 4c 23 b2 e0 0a b0 1d a5 c0 f0 03 4c 80 a9 2c 93 09 50 06 e0 06 90 02 a2 05

bd d3 ba 85 80 bd b4 ba 85 71 60 e0 0e b0 1b bd 18 be 85 d0 bc 82 ba a2 02 a9 08 20 f1 ad a2 10 20 64 b7 ca e0 05 b0 f8 90 1b e0 11 b0 35 bc 18 be b5 6e 5d 1b be 95 6e f0 03 bc 1e be 20 23 b2 a2 0c 20 a6 b3 a2 16 a4 7c f0 01 e8 8e 5a 09 20 0d ae a5 7e f0 b4 a6 d0 f0 06 e0 01 d0 ac a2 2a 4c 6f a7 e0

11 d0 50 a5 c0 d0 5a a9 7f 85 c0 a9 ff 85 71 a9 1e 85 80 a9 30 85 c3 a9 00 85 c2 8d 74 0a 8d 07 0b 8d 38 0b 8d 69 0b a9 01 8d b0 09 8d e1 09 8d 12 0a 8d a5 0a a5 8f 85 c4 a5 8e 85 c5 a5 62 f0 0b a5 91 2a 2a 2a 29 03 a8 b9 d7 be 85 c6 a0 11 4c 23 b2 e0 13 b0 0b ad 5c 09 49 01 29 01 8d 5c 09 60 d0 08

ad 00 d3 c9 ff f0 f7 60 a0 76 a2 04 a9 00 85 ec 85 d6 85 d1 85 8b 8d 07 d2 85 71 85 81 85 7d 85 c0 85 c1 a9 ff 85 64 84 65 8a 05 62 aa bd dd be 18 65 cb aa a9 00 85 c9 85 c8 65 cc 30 25 4a 8a 6a 4a 4a 4a c9 13 90 04 a9 12 a2 0f 85 cd a8 8a c0 00 f0 0b c0 0b 90 04 c0 0f 90 03 4a 49 08 29 0f 85 ce 60

a5 c0 d0 04 a5 d0 30 01 60 2c 97 09 30 03 20 b9 b4 a5 72 29 01 d0 2e 18 a5 8f 65 c8 29 7f 85 8f 18 69 3d 8d 2e 0c 18 a5 8e 65 c9 29 7f 85 8e 18 69 3f 8d fd 0b a5 8c 18 69 3f 8d fc 0b a5 8d 18 69 3d 8d 2d 0c a5 8f 4a 4a 4a 85 6a a5 8e 29 70 05 6a 85 92 aa bd c9 08 10 02 a9 00 09 90 2c 97 09 70 03 8d

8d 09 38 a5 8f e5 8d b0 04 49 ff 69 01 85 6a 38 a5 8e e5 8c b0 04 49 ff 69 01 4a 18 65 6a a8 4a 4a 4a aa 98 29 03 18 7d dd ba 85 91 a8 a9 10 8d 7d 09 8d 7e 09 8d 7f 09 a2 02 fe 7d 09 bd 7d 09 c9 1a 90 08 a9 10 9d 7d 09 ca 10 ee 88 d0 e9 60 a5 d1 f0 05 c6 cf f0 10 60 a4 65 f0 fb 84 d1 a0 23 a2 0f a9

07 20 f1 ad a2 13 a9 00 85 6b 9d 1f 0d ca 10 fa a6 d1 e6 d1 d0 09 a2 0f a0 80 a9 07 4c f1 ad bd aa bb c9 fc d0 0f a4 ce b9 fc be a6 6b 9d 1f 0d a9 3c 85 cf 60 c9 fd d0 05 a4 cd b9 e9 be 85 6c 29 3f 85 6a a9 2a 85 68 a9 bc 85 69 e6 68 d0 02 e6 69 a0 00 b1 68 10 f4 c6 6a d0 f0 29 3f 49 a0 a6 6b e6 6b

9d 1f 0d c8 b1 68 10 f0 e6 6b a9 3c 24 6c 10 04 50 08 a9 fe 50 96 a0 ff 84 d1 85 cf 60 a5 d6 f0 37 c6 d8 10 33 a5 d9 f0 0a a5 d5 30 06 85 d8 a0 00 f0 20 a5 d4 85 d8 a6 d2 e6 d2 bd 5c bf 8d 06 d2 a0 a8 c9 ff d0 0c a5 d7 85 d2 c6 d3 10 e4 a0 00 84 d6 8c 07 d2 84 d9 a5 e2 f0 09 c6 e2 d0 05 a2 14 20 a8

ae a6 70 8a 4a 4a 4a 4a 4a c5 e1 90 2c a9 00 85 e1 e8 8a 49 ff 8d 04 d2 aa 0a 0a 0a 0a 0a 8d 00 d2 8a 4a 4a 4a 8d 02 d2 4a 49 8f 8d 03 d2 29 87 8d 05 d2 a9 70 8d 08 d2 60 a5 db f0 08 c6 db d0 04 a9 8f 85 dc a6 da f0 1c c6 da d0 0a a9 af 85 dc a9 02 85 de 85 df bd ea bf 85 dd bd f2 bf 8d 04 d2 8d 09

d2 a5 e3 f0 0e c6 e3 ad 0a d2 8d 04 d2 29 20 45 dd 85 dd 18 a5 de 65 e0 85 de 8d 00 d2 a5 df 69 00 85 df 8d 02 d2 a6 dc a4 dd a5 72 4a 90 1a a5 e1 f0 16 c6 e1 c9 11 b0 10 8a 29 0f f0 03 ca 86 dc 98 29 0f f0 03 88 84 dd 8e 03 d2 8c 05 d2 60 bd 3e bf c5 d6 90 0c a0 05 bd 3e bf 99 d2 00 e8 88 10 f6 60

a2 59 a9 0d 9d 85 02 e0 0a b0 05 bd a9 bf 95 f2 ca 10 ef a9 70 8d 80 02 8d 81 02 a9 41 8d e7 02 a9 80 8d e8 02 a9 02 8d e9 02 a2 00 86 68 86 69 86 6a 86 6b 18 a5 68 69 51 85 68 a5 69 9d e9 0d 69 00 85 69 18 a5 6a 69 64 85 6a a5 6b 9d e9 0e f8 69 00 d8 85 6b e8 d0 db a2 00 86 68 a9 10 85 69 18 a5 68

9d 00 08 69 28 85 68 a5 69 9d 64 08 69 00 85 69 bd 42 bb 9d 49 09 e8 e0 64 90 e2 ca 86 78 a2 03 8e 11 09 bd a6 bb 85 6a a4 62 c8 c8 84 6b ad 0a d2 29 7f a8 b9 c9 08 d0 f5 a5 6a 10 21 c0 10 90 ed c0 70 b0 e9 98 29 0f f0 e4 c9 0f f0 e0 b9 c8 08 19 ca 08 19 d9 08 19 b9 08 d0 d2 a5 6a 99 c9 08 c6 6b 10

c9 ca 10 bb a2 b4 a9 0a 9d 34 0d ca d0 f8 a2 0f a9 18 9d 37 0d ca 10 f8 a9 1a 8d 47 0d a9 00 8d 11 09 a9 48 85 90 a9 43 85 8d 85 8f a9 47 85 8e 85 8c a9 ea 8d e8 0f a0 00 84 6a a6 6a bd c9 08 10 02 a9 05 aa bd d1 be 99 4b 0d c8 e6 6a a5 6a 29 0f d0 e7 a9 19 99 4b 0d c8 c8 c8 c8 c0 a0 90 da 60 e6 76

a2 90 a5 76 10 09 ac 55 09 c0 80 d0 02 a2 44 29 03 85 72 d0 1f a4 7d f0 17 a0 a0 2c 94 09 10 0b 70 07 ad 0a d2 c9 c8 90 07 a0 00 98 d0 02 a2 26 84 81 86 fb a2 02 bd 8e 0c d0 06 b5 eb f0 02 d6 eb ca 10 f2 a5 73 f0 16 c6 73 d0 04 a2 11 86 79 c9 70 b0 04 a2 00 86 8a c9 18 b0 02 c6 79 c6 74 10 21 a9 28

85 74 a2 04 fe a3 09 bd a3 09 c9 da 90 0d a9 d0 9d a3 09 e0 03 d0 01 ca ca 10 e9 c6 78 30 01 60 a9 31 85 78 a5 cb d0 02 c6 cc c6 cb a6 64 d0 ef 86 6a bd c9 08 10 19 20 f1 b7 f0 14 a9 02 9d c9 08 85 6a 38 a5 cb e9 12 85 cb a5 cc e9 00 85 cc e8 10 df a5 6a f0 0f 2c 97 09 70 0a a0 15 20 23 b2 a2 18 20

a6 b3 c6 9f 30 07 a6 93 bd c9 08 30 1f a9 07 85 9f a0 7f ad 0a d2 29 7f aa bd c9 08 30 0e 88 10 f2 a2 7f bd c9 08 30 04 ca 10 f8 60 86 93 8a 29 0f 85 94 8a 4a 4a 4a 4a 85 95 a2 ff e8 10 30 a2 00 bd c9 08 29 df 9d c9 08 e8 10 f5 2c 97 09 70 1d a2 00 bd c9 08 10 13 20 f1 b7 f0 0e a9 63 85 78 a0 13 20

23 b2 a2 18 4c a6 b3 e8 10 e5 60 bc c9 08 c0 0a b0 c6 ad 0a d2 d9 bb bf b0 be e4 90 f0 ba a0 08 18 8a 79 c0 bf 85 6a 29 0f 38 e5 94 b0 04 49 ff 69 01 85 6b a5 6a 4a 4a 4a 4a 38 e5 95 b0 04 49 ff 69 01 18 65 6b 99 96 00 88 10 d4 a9 01 85 6b a0 07 b9 96 00 c5 9e b0 24 18 8a 79 c0 bf 30 1d 84 6a a8 b9

c9 08 d0 13 bd c9 08 c4 90 f0 0c 09 20 99 c9 08 a9 00 9d c9 08 f0 0b a4 6a 88 10 d2 e6 9e c6 6b 10 ca 4c ea b5 bd ad 09 49 01 f0 02 a9 ff 85 6b 85 6c bd 40 0a 85 6a ad 0a d2 09 bf 5d d3 0a 0a 26 6a 26 6b 0a 26 6a 26 6b a5 6d 49 ff 85 6d 30 1a 18 b9 d3 0a 65 6a 99 d3 0a b9 40 0a 65 6b 99 40 0a b9 ad

09 65 6c 99 ad 09 60 38 b9 d3 0a e5 6a 99 d3 0a b9 40 0a e5 6b 99 40 0a b9 ad 09 e5 6c 99 ad 09 60 c9 50 b0 5b 85 6d a9 50 e0 05 b0 02 a9 7d bc de 09 d0 09 38 e6 6d e5 6d 9d 2a 0c 60 18 65 6d 9d 2a 0c 60 c9 32 b0 38 85 6d a9 32 e0 05 b0 04 06 6d a9 7a 24 d0 50 13 2c 96 09 10 07 2c 0a d2 50 0e 70 15

bc ad 09 d0 07 f0 0e bc 0f 0a f0 09 38 e6 6d e5 6d 9d f9 0b 60 18 65 6d 9d f9 0b 60 e0 05 b0 06 a9 fb 9d f9 0b 60 a9 63 9d f9 0b 9d 2a 0c e0 11 b0 f3 ad 0a d2 29 0f 85 6a 9d a2 0a ad 0a d2 29 0f c5 6a 90 02 85 6a 9d 71 0a a9 0f 9d 40 0a a5 d0 49 01 29 01 9d ad 09 d0 11 9d 04 0b 9d 35 0b 38 e5 6a 9d

40 0a a9 80 9d d3 0a 24 d0 50 11 ad 0a d2 9d 71 0a ad 0a d2 9d 40 0a 29 01 9d ad 09 ad 0a d2 29 01 9d 0f 0a d0 0f 38 fd 35 0b 9d 35 0b a9 00 fd a2 0a 9d a2 0a ad 0a d2 29 01 9d de 09 d0 0f 38 fd 04 0b 9d 04 0b a9 00 fd 71 0a 9d 71 0a 60 bd c8 08 f0 0d bd

ca08f008bdb908f003bdd90860a670e471f0089004c670b012e670a5c0d00c2c93091007a5712d0ad28570a00120cdb82c95093030a931a01720a7b8a962a01d20a7b8a900a02320a7b8ad6e098d6f09c90ab011ae5c09bdd30a4a4a4a4aaabde90e8d6f

0918a57f657d6580657e6901c57f857fb039a20324647033de5509bd5509c980b029a9899d5509e002d008a5cbd002c6ccc6cbca10dea20a8aa0039955098810fa2045b0a031a204200ab160186d5c09aaa910856abdad094abd400ab00449ffc66aaaa5

6a994909982910f005e0ffd001cabde90eaa290f994b098a4a4a4a4a994a0960000102030700183c7e7e76f7dfdffffff7767e7e3c1810387c7cfededafaeeee7c7c3810183c3c7e6e7a7e767e3c3c181038387c747c6c38381010183c2c3c3c18081038

382838103c3c243c7e7e7e5affff4242424242421c1c143e3e3e2a7f7f222222222218183c3c3c3c7e2424242410103838387c28282818183c181810103810187effffffffffe7e7ffffffffff7e7e00183c7effffffe766ffffffff7e7e00183c7effff

e766ffffffff3c183cffffe766ffff7e3c00183cffffff3c18183cff3c1828282828ee0000ee282828280081818181bdffffbd818181818282bafefeba8282425a7e7e5a4244547c7c5444243c3c242838382818181010e0f8f8fe57fef8f8c0c0f0c0f0

f0fcbefcf08080c0c0f0bcf0c0071f1f7fea7f1f1f03030f030f0f3f7d3f0f010103030f3d0f03183c7e7edbc381818110387c7cd6c68282183c3c666642421038386c4444183c2424103828183c7eff1818ff7e3c1810387cfe3838fe7c3810183c7e18

7e3c1810387c107c3810183c183c18103838108d00464909200600012ea1000046f8a04dc81000004609a14dc8104d00100d0d0d0d0d30461f0d4da8121b130b08ffffffffaaffaaffaaaaaaffaaaaaaaaaaaaaa5555aa55aa555555aa55555555c0300c

0300010204081020406070f2dfdedad8dddbf3f5f0f8ffc0fdedfed2f9e5cae7000406080a0c0e1e2d3c0a0d1014173246505a787d82878c9baab8c8d0d8dfe8f1fa0001ff0050288750368777461e77561e774691944691784e067e4b0f7e510f8d4e07

8547847e4c858c4c858552843e320f54320ffe4e35824f3482503285513482523582fe0404030202030404120b00000a554b40400a8d8b898989890a160b000a140b0f00000a514b0f00000a938b0f0000000a3721323000252e253227391a0000001000

000000b4a1b2a7a5b4b39a000024231a302533232c3200f3f4e1f200e4e1f4e5dad0d0ced0d00000000000cf0403020005064205064304420443060742074348094a0bcd0bcc094e094fd0119256134e154fb89799988c9d1e9ffd25fc789b60b897981a

8e1c94249ffd25fca768b897981a8f249ffd25fc662c5a2e5a315a335ab8347637b578378c7823b578238c7804b578048c7806b578068c78a275a24ca175a14cc1b897981a8e249ffd25fc66a02020202052454420414c455254cf4ecf4646d34849454c

4453c1545441434bc34f4d5055544552d45241434b494e47d7484154532057524f4e473fc85950455257415250c54e4741474544d354415242415345c4455354524f594544d35552524f554e444544c1424f52544544c34f4d504c455445c85950455253

50414345cf52424954c5535441424c4953484544c44f434b494e47c54e45524759d452414e53464552d354414e444259d354415220464c45455420544fd354415220435255495345522037c14c4c20554e495453cd495353494f4ea02020205354415220

52414944455253da45524fc259205a594c4f4e2046495245d04f535448554d4f5553d2414e4b2049533ac34f505952494748542041544152492031393739d355422d535041434520524144494fd34543544f52205343414ec54e47494e4553ce4557c34c

415353c34f4e47524154554c4154494f4e53d245504f525420544f2042415345c64f5220545241494e494e47c7414c414354494320434f4f4bc74152424147452053434f57204341505441494ed24f4f4b4945ce4f56494345c54e5349474ed0494c4f54

c14345cc49455554454e414e54d7415252494f52c341505441494ec34f4d4d414e444552c4414d414745c4414d41474544c34f4e54524f4cd0484f544f4e53a0d354415220434f4d4d414e44455280000140800e0904ff08020b070101111f2b353d757a

010d151b2125292b2d384136360000007e8e9daab4bc7b7a47525b50500000004353616c757a757a01111f2b353d757a616a72797f83292b86909aa1a8ad292bc1c1c1c1c1c175c10f0d0b09070501010b0705050303010109080502000000000f0e0c09

0704020109080502000000000f0d0a08040301010f0d0b0907050101080706050302010109090606040301010b0b0b0b0b0b010bf8ff0c1e1e1d1c1b9fbfdffff808504c3c6f3c3c32642832285aa9aaaaababacacadadaeaeafb0b1b2b3b3b9b9959595

949494949393939292929191914a4c4e500050b4fe555b61676d71585e646a6f7318ff02008aa0000850004040010388af080050043040010384a804005004020202030c020403ff1007040704020200070b05ff20020b0e060820000e10ff18ff4060ff

101010ff4020ff484051ff84b4fcb484ff010c0c0c0c0e0e0e20000000020406080c81848894801010107070701004040000000100003e1e1008040201000081828488909ebea6aaaf0000b85afc5e90ffff3f0f3f7fffff00ffffc020f0efff0f101101

f1000008101828303840500020202000a000009f0e0e0e0c0c0c0a0a0a080808060604048a8f8d8b8987858300040104010401040700804aa1

✁

7

✃
8

G
T

F
O

✁

5

✃

4
P
o
C

23

3 How Slow Can You Go?

by James Forshaw

While doing my research into Windows, I tend to
find quite a few race condition vulnerabilities. Al-
though these vulnerabilities can be exploited, you
typically only get a tiny window of time in which
to do it. A fairly typical sequence of actions looks
something like this:

1. Do some security check.

2. Access some resource.

3. Perform secure action.

In this case the race condition is between the
security check and the action. If we can modify
the state of the system in between those actions,
it might be possible to elevate privileges or do un-
expected things. The time window is typically very
small, but if the code is accessing some controllable
resource in between the check and the action, we
might still be able to create a very reliable exploit.

I wanted to find a way of increasing the time win-
dow to win the race in cases where the code accesses
a resource we control. The following is an overview
of the thought process I went through to come up
with a working solution.

3.1 Investigating Object Manager
Lookup Performance

Hidden under the hood of Windows NT is the Ob-
ject Manager Namespace (OMN). You wouldn’t typ-
ically interact with it directly as the Win32 API for
the most part hides it away. The NT kernel defines a
set of objects, such as Files, Events, Registry Keys,
that can all have a name associated with them. The
OMN provides the means to lookup these named
objects. It acts like a file system; for example, you
can specify a path to an NT system call such as
\BaseNamedObjects\MyEvent, and an event can be
thus looked up.

There are two special object types for use in the
OMN: Object Directories and Symbolic Links. Ob-
ject Directories act as named containers for other
objects, whereas Symbolic Links allow a name to be
redirected to another OMN path. Symbolic Links
are used quite a lot; for example, the Windows drive
letters are really symbolic links to the real storage
device. When we call an NT system call, the kernel
must lookup the entire path, following any symbolic
links until it either reaches the named object or fails
to find a match.

In this exploit we want to make the process of
looking up a resource we control as slow as possible.
For example, if we could make it take 1 or 2 seconds,
then we’ve got a massive window of opportunity to
win the race condition. Therefore I want to find
a way of manipulating the Object Manager lookup
process in such a way that we achieve this goal. I
am going to present my approach to achieving the
required result.

A note about my setup: for my testing I am go-
ing to open a named Event object. All testing is
done on my 2.8GHz Xeon Workstation. Although it
has 20 physical cores, the lookup process won’t be
parallelized, and therefore that shouldn’t be an is-
sue. Xeons tend to have more L2/L3 cache than con-
sumer processors, but if anything this should only
make our timings faster. If I can get a long lookup
time on my Workstation, it should be possible on
pretty much anything else running Windows. Fi-
nally, this is all tested on an up-to-date Windows 10;
however, not much has changed since Windows 7
that might affect the results.

First let’s just measure the time it takes to do

24

a normal lookup. We’ll repeat the lookup a 1, 000
times and take the average. The results are prob-
ably what we’d expect: the lookup process for a
simple named Event is roughly 3µs. That includes
the system call transition, lookup process, and the
access check on the Event object. Although in the-
ory you could win a race, it seems pretty unlikely,
even on a multi-core processor. So let’s think about
a way of improving the lookup time (and when I say
“improve”, I mean making the lookup time slower).

An Object Manager path is limited to the
maximum string size afforded by the UNI-
CODE_STRING structure.

struct UNICODE_STRING {
2 USHORT Length ;

USHORT MaximumLength ;
4 PWSTR Buf f e r ;

}

We can see that the Length member is an un-
signed 16 bit integer, limiting the maximum length
to 216 − 1. This, however, is a byte count, so in
fact this limits us to 215 − 1 or 32767 characters.
From this result, there are two obvious possible ap-
proaches we can take:

1. Make a path that contains one very long name.
The lookup process would have to compare the
entire name using a typical string comparison
operation to verify it’s accessing the correct
object. This should take linear time relative
to the length of the string.

2. Make multiple small named directories and re-
peat. E.g., \A\A\A\A\...\EventName. The
assumption here is that each lookup takes a
fixed amount of time to complete. The oper-
ation will again be linear time relative to the
depth of recursion of the directories.

Now it would seem likely that the cost of the en-
tire operation of a single lookup will be worse than
a string comparison, a primitive that is typically op-
timized quite heavily. At this point we have not had
to look at any actual kernel code, and we won’t start
quite yet, so instead empirical testing seems the way
to go.

Let’s start with the first approach, making a
long string and performing a lookup on it. Our
name limit is around 32767, although we’ll need
to be able to make the object in a writable direc-
tory such as \BaseNamedObject, which reduces the

length slightly, but not enough to make significant
impact. Therefore, we’ll perform the Event opening
on names between 1 character and 32,000 characters
in length. The results are shown below:

0 8000 16000 24000 32000
0

0.025

0.05

0.075

0.1

Name Length in Characters

L
o
ok

u
p
 T

im
e

A
ve

ra
ge

 (
m

s)

Although this is a little noisy, our assumption
of a linear lookup time seems correct. The longer
the string, the longer it takes to look it up. For a
32,000 character long string, this seems to top out
at roughly 90µs – still not enough in my opinion for
a useful primitive, but certainly a start.

Now let’s instead look at the recursive directory
approach. In this case the upper bound is around
16,000 directories. This is because each path compo-
nent must contain a backslash and a single charac-
ter name (i.e. \A\A\A...). Therefore our maximum
path limit is halved. Of course we’d make the as-
sumption that the time to go through the lookup
process is going to be greater than the time it takes
to compare 4 Unicode characters, but let’s test to
make sure. The results are shown below:

0 4000 8000 12000 16000
0

1

2

3

4

Directory Count

L
o
ok

u
p
 T

im
e

A
ve

ra
ge

 (
m

s)

Well, I think that’s unequivocal. For 16,000 re-
cursive depth, the average lookup time is around
3700µs, or around 40 times larger than the long path
name lookup result. Now, of course, this comes with
downsides. For a start, you need to create 16,000 or
so directory objects in the kernel. At least on a mod-

25

ern 64 bit Windows this isn’t likely to be too taxing,
however it’s still worth bearing in mind. Also the
process must maintain a handle to each of those di-
rectories, because otherwise they’d be deleted (as a
normal user cannot make kernel objects permanent).
Fortunately our handle limit for a single process is
of the order of 16 million, so we’re a couple of orders
of magnitude below the limit of that.

Now, is 3700µs going to be enough for us?
Maybe, it’s certainly orders of magnitude greater
than 3µs. But can we do better? We’ve now run
out of path space, we’ve filled the absolute maxi-
mum allowed string length with recursive directory
names. What we could do with is a method of mul-
tiplying that effect without requiring a longer path.
We can do this by using Object Manager symbolic
links. By placing the symbolic link as the last com-
ponent of the long path we can force the kernel to
reparse, and start the lookup all over again. On the
final lookup we’ll just point the symbolic link to the
target.

Ultimately though we can only do this 64 times.
Why, can’t we do this indefinitely? Well, no—for
a fairly obvious reason: each time a symbolic link
is encountered the kernel restarts the parsing pro-
cesses; if you pointed a symbolic link at itself, you’d
end up in an infinite loop. The reparse limit of 64
prevents that from becoming a problem. The re-
sults are as we expected, the time taken to lookup
our event is proportional to both the number of sym-
bolic links and the number of recursive directories.
For 64 symbolic links and 16,000 directories it takes
approximately 200ms (note I’ve had to change the
order of the result now to milliseconds). At around
1
5 of a second that should be enough, right? Sure,
but I’m greedy; I want more. How can we make the
lookup time even worse?

At this point it’s time to break out the disassem-
bler and see how the lookup process works under the
hood in the kernel. First off, let’s see what an object
directory structure looks like. We can dump it from
a kernel debugging session using WinDBG with the

26

command dt nt!_OBJECT_DIRECTORY. Converted
back to a C-style structure, it looks something like
the following:

1 struct OBJECT_DIRECTORY
{

3 POBJECT_DIRECTORY_ENTRY HashBuckets [3 7] ;
EX_PUSH_LOCK Lock ;

5 PDEVICE_MAP DeviceMap ;
ULONG Ses s i on Id ;

7 PVOID NamespaceEntry ;
ULONG Flags ;

9 POBJECT_DIRECTORY ShadowDirectory ;
}

Based on the presence of the HashBucket field,
it’s safe to assume that the kernel is using a hash
table to store directory entries. This makes some
sense, because if the kernel just maintained a list
of directory entries, this would be pretty poor for
performance. With a hash table the lookup time
is much reduced as long as the hashing algorithm
does a good job of reducing collisions. This is only
the case though if the algorithm isn’t being actively
exploited. As we’re trying to increase the cost of
lookups, we can intentionally add entries with col-
lisions to make the lookup process take the worst
case time, which is linear relative to the number of
entries in a directory. This again provides us with
another scaling factor, and in this case the number
of entries is only going to be limited by available
memory, as we are never going to need to put the
name into the path.

So what’s the algorithm for the hash? The
main function of interest is ObpLookupObject-

Name, which is referenced by functions such as Ob-

ReferenceObjectByName. The directory entry logic
is buried somewhere in this large function; however,
fortunately there’s a helper function ObpLookup-

DirectoryEntryEx, which has the same logic (it
isn’t actually called by ObpLookupObjectName, but
it doesn’t matter) that is smaller and easier to re-
verse (Figure 10).

So the hashing algorithm is pretty simple; it re-
peatedly mixes the bits of the current hash value
and then adds the uppercase Unicode character to
the hash. We could work out a clever way of getting
hash collisions from this, but actually it’s pretty sim-
ple. The object manager allows us to specify names
containing NULL characters, therefore if we take our
target name, say ‘A’, and prefix it with increasing
length strings containing only NULL, we get both
Hash and Bucket collisions. This does limit us to

creating only 32,000 or so colliding entries before we
run out of strings to create them, but, as we’ll see
in a minute, that’s not a problem. Let’s look at the
results of doing this for a single directory:

0 4000 8000 12000 16000
0

0.15

0.3

0.45

0.6

Collisions

L
o
ok

u
p
 T

im
e

A
ve

ra
ge

 (
m

s)

Yet again, a nice linear graph. For a given col-
lision count it’s nowhere near as good as the recur-
sive directory approach, but it is a multiplicative
factor in the lookup time, which we can abuse. So
you’d think we can now easily apply this to all our
16,000 recursive directories, add in symbolic links,
and probably get an insane lookup time. Yes, we
would, however there’s a problem, insertion time.
Every time we add a new entry to a directory, the
kernel must do a lookup to check that the entry
doesn’t already exist. This means that, for every
entry we add, we must do (n − 1)2 checks in the
hash bucket just to find that we don’t have the en-
try before we insert it. This means that the time
to add a new entry is approximately proportional to
the square of the number of entries. Sure it’s not
a cubic or exponential increase, but that’s hardly a
consolation. To prove that this is the case we can
just measure the insertion time:

0 4000 8000 12000 16000
0

1500

3000

4500

6000

Directory Count

In
se

rt
io

n
 T

im
e

(m
s)

That graph shows a pretty clear n2 trend for the
insertion time. If, say, we wanted to create a direc-
tory entry with 16,000 collisions, it takes close to 5.5
seconds. If we wanted to then do that for all 16,000

27

POBJECT_DIRECTORY ObpLookupDirectoryEntryEx (POBJECT_DIRECTORY Directory ,
2 PUNICODE_STRING Name,

ULONG Attr ibuteF lags) {
4 BOOLEAN Case InSens i t i v e = (Att r ibuteF lags & OBJ_CASE_INSENSITIVE) != 0 ;

SIZE_T CharCount = Name−>Length / s izeof (WCHAR) ;
6 WCHAR∗ Buf f e r = Name−>Buf f e r ;

ULONG Hash = 0 ;
8 while (CharCount) {

Hash = (Hash / 2) + 3 ∗ Hash ;
10 Hash += RtlUpcaseUnicodeChar (∗ Buf f e r) ;

Bu f f e r++;
12 CharCount−−;

}
14

OBJECT_DIRECTORY_ENTRY∗ Entry = Directory−>HashBuckets [Hash % 3 7] ;
16 while (Entry) {

i f (Entry−>HashValue == Hash) {
18 i f (RtlEqualUnicodeStr ing (Name,

ObpGetObjectName (Entry−>Object) , Case InSens i t i v e)) {
20 ObReferenceObject (Entry−>Object) ;

return Entry−>Object ;
22 }

}
24 Entry = Entry−>ChainLink ;

}
26

return NULL;
28 }

Figure 10. ObpLookupDirectoryEntryEx()

28

recursive directory entries, it would take around 24
hours! Now, I think we’re going a bit over the top
here, and by fiddling with the values we can get
something that doesn’t take too long to set up and
gives us a long lookup time. But I’m still greedy; I
want to see how far I can push the lookup time. Is
there any way we can get the best of all worlds?

The final piece of the puzzle is to bring in Shadow
directories, which allow the Object Manager a fall-
back path if it can’t find an entry in a directory.
You can use almost any other Object Manager direc-
tory as a shadow, which will allow us to control the
lookup behavior. A Shadow Directory has a crucial
difference from symbolic links, as it doesn’t cause a
reparse to occur in the lookup process. This means
they’re not restricted to the 64 reparse limit. As
each lookup consumes a path component, eventually
there will be no more paths to lookup. If we put to-
gether two directories in the following arrangement,
we can pass a similar path to our recursive directory
lookup, without actually creating all the directories.

Shadow Directory
Lookup

Path: \A\A\A\A\A ...

Lookup

AA

So how does this actually work? If we open a
path of the form \A\A\A\A\A..., the kernel will first
lookup the initial ‘A’ directory. This is the directory
on the left of the diagram. It will then try to open
the next ‘A’ directory, which is on the right, which
again it will find. Next the kernel again looks up
‘A’, but in this case it doesn’t exist. As the direc-
tory has a shadow link to its parent, it looks there
instead, finds the same ‘A’ directory, and repeats
the process. This will continue until we run out of
path elements to lookup.

So let’s determine the performance of this ap-
proach. We’d perhaps expect it to be less perfor-

mant relative to actually creating all those directo-
ries if only because of the cache effects of the pro-
cessor. But hopefully it won’t be too far behind.

0 4000 8000 12000 16000
0

1

2

3

4

Directory Count

L
o
ok

u
p
 T

im
e

A
ve

ra
ge

 (
m

s) Linear Sub
Directory

Linear
Shadow
Directory

Looks good. Yes, the performance is lower than
actually creating the directories, but once we bring
collisions into the mix, that’s not really going to
matter much. So the final result is that instead of
creating 16,000 directories with 16,000 collisions we
can do it with just 2 directories, which is far more
manageable and only takes around 11 seconds on
my workstation. So, to sign off, let’s combine every-
thing together.

1. 16,000 path components using 2 object direc-
tories in a shadow configuration

2. 16,000 collisions per directory

3. 64 symbolic link reparses

And the resulting time for a single lookup on
my workstation is *drum roll please* 19 minutes! I
think we might just be able to win the race condition
with that.

Code examples can be found attached to this
document.10

3.2 Conclusion

So after all that effort we can make the kernel take
around 19 minutes to lookup a single controlled re-
source path. That’s pretty impressive. We have
many options to get the kernel to start the lookup
process, allowing us to use not just files and registry
keys but almost any named event. It’s a typical tale
of unexpected behavior when facing pathological in-
put, and it’s not really surprising Microsoft wouldn’t
optimize for this use case.

10unzip pocorgtfo13.pdf object_manager_lookup_poc.cs

29

4 The FaceWhisperer for USB Glitching; or,

Reading RFID with ROP and a Wacom Tablet

by Micah Elizabeth Scott

Greetings, neighbors!
Today, like most days, I would like to celebrate

the diversity of tiny machines around us. This time
I’ve prepared a USB magic trick of sorts, incorpo-
rating techniques from the analog and the digital
domains.

Regular readers will be well aware that computer
peripherals are typically general-purpose computers
themselves, and the operating system often trusts
them a little too much. Devices attached to Thun-
derbolt (PCI Express) are trusted as much as the
CPU. Devices attached to USB, at best, are as privi-
leged as the user, who can typically do anything they
want albeit slowly and using interfaces designed for
meat.11 If that USB device can exploit a bug in lit-
erally any available driver, the device could achieve
even more direct levels of control.

Not only are these peripherals small computers
with storage and vulnerabilities and secrets, they
typically have very direct access to their own hard-
ware. It’s often firmware’s responsibility to set up
clocks, program power converters, and process ana-
log signals. Projects like BadUSB have focused on
reprogramming a USB device to attack the com-
puter they’re attached to. What about using the
available low-level peripherals in ways they weren’t
intended?

I recently made a video, a “Graphics Tablet
Primer for Hackers,” going into some detail on how a
pen tablet input device actually works. I compared
the electromagnetic power and data transfer to the
low-frequency RFID cards still used by many door
access control systems. At the time this was just a
convenient didactic tool, but it did start me won-
dering just how hard it would be to use a graphics
tablet to read 125 kHz RFID cards.

I had somewhat arbitrarily chosen a Wacom
CTE-450 (Bamboo Fun) tablet for this experiment.
I had one handy, and I’d already done a little pre-
liminary reversing on its protocol and circuit design.
It’s old enough that it didn’t seem to use any cus-
tom Wacom silicon, recent enough to be both cheap
and plentiful on the second-hand market.

4.1 A Very Descriptive Descriptor

Typically you need firmware to analyze a device.
Documented interfaces are the tip of the iceberg. To
really see what a device is capable of, you need to
see everything the firmware knows how to do. Some-
times this is easy to get. Back in PoC‖GTFO 7:3
when I was reversing an optical drive, the firmware
was plainly available from the manufacturer’s web
site. Usually you won’t be so lucky. Manufactur-
ers often encrypt firmware to hide their crimes or
slow down clones, and some devices don’t appear to
support firmware updates at all.

This device seemed to be the latter kind. No
firmware updates online. No hints of a firmware up-
dating process hidden in their drivers. The CPU
was something I didn’t recognize at first. I posted

11unzip pocorgtfo13.pdf meat.txt

30

XMEGA128D4

MAX3421ESMD

CLK1

CLK2

NC7WZ14 NC7WZ14
.1uF

49

VUSB IN

GND

GND

CLK3

3.3V
3.3V

3.3V

RESET

GND

GND

GND

100n100n 100n

100n1u

GND GND

3.3V3.3V

100

10k

3.3V

Reset

1
k

100

GND

3.3V

GND

Power
G

N
D1k

3
.3

V

V
B

U
S

1
k

33
33

PA5

PA6

1k

1k

3.3V

PTC 2A

GND

GND

SYNCIN

GND

IC1

PE0
28

PE1
29

PE2
32

PE3
33

PD7
27

PD6
26

PD5
25

PD4
24

PD3
23

PD2
22

PD1
21

PD0
20

PC7
17

PC6
16

PC5
15

PC4
14

PC3
13

PC2
12

PC1
11

PC0
10

PB3
7

PB2
6

PB1
5

PB0
4

PA6
2

PA7
3

PA5
1

PA4
44

PA3
43

PA2
42

PA1
41

PA0
40

AVCC
39

38

31

PR0(XT2)
36

PR1(XT1)
37

19

VCC
9

18

GND
8

PDI_DATA
34

30

RESET/PDI_CLK
35

U1

VCC
23

VL
2

D+
21

D-
20

VBCOMP
22

X0
25

X1
24

INT
18

RES
12

GPX
17

MOSI
16

MISO
15

SCK
13

SS
14

GND
3

GND
19

GOUT7
11

GOUT6
10

GOUT5
9

GOUT4
8

GOUT3
7

GOUT2
6

GOUT1
5

GOUT0
4

GPIN7
1

GPIN6
32

GPIN5
31

GPIN4
30

GPIN3
29

GPIN2
28

GPIN1
27

GPIN0
26

X1

X2

D+

D-

VBUS

GND

G
N

D
@

1

G
N

D
@

2

Q1

U2A

1 6

U2B

3 4
C1

R1

U2P

G
N

D
V

C
C

2
5

J2

J5

1

2

3

PRST
5

3V3
3

3V3
18

5V
1

5V
20

FHS1
4

FHS2
6

FIO1
10

FIO2
12

FIO3
14

FIO4
16

GND
17

GND
19

GND
2

PDIC
13

PDID
15

PMISO
7

PMOSI
9

PSCK
11

VREF
8

J4

1

2

3

4

J6

1

2

3

C2C3 C4

C5C6

R2

R3

LED2

R
4

R5

LED1

R6

L
E

D
3

R
7

R8
R9

LED4

LED5

R10

R11

F1

J7

1

2

3

D+

D+

D-

D-

CLK12

CLK12

CLK12

CLK12

RESET_GATE

RESET_GATE
TIO1

TIO1

TIO2

TIO2

TIO3

TIO3

TIO4

TIO4

PDI_CLK
PDI_CLK

PDI_DATA PDI_DATA

USB_IRQ

USB_IRQ

USB_RESET

USB_RESET

USB_GPX

USB_GPX

USB_MOSIUSB_MOSI
USB_MISO

USB_MISO

USB_SCK

USB_SCK

USB_SS

USB_SS

SYNC_IN

SYNC_IN

scanlime
git

U
S

B

D

G

S

Released under the Creative Commons

Attribution Share-Alike 4.0 License

 https://creativecommons.org/licenses/by-sa/4.0/

Design by:

31

the photo to Twitter, and Ladyada recognized it as
a Sanyo/ONsemi LC87, an 8-bit micro that seems
to be mostly used in Japanese consumer electron-
ics. It comes in both flash and ROM versions, both
of which I would later find in these tablets. Test
points were available for an on-chip debugger, but I
couldn’t find the debug adapter for sale anywhere
nor could I find any documentation for the pro-
tocol. I even found the firmware for this myste-
rious TCB87-TypeC debug adapter, and a way to
disassemble it, but the actual debug port was im-
plemented by a custom peripheral on the adapter’s
CPU. I tried various bit twiddling and pulse pushing
in hopes of getting a response from the debug port,
but my best guess is that it’s been disabled.

At this point, the remaining options are more di-
rect. A sufficiently funded and motivated researcher
could certainly break out the micropositioners and
acid, reading the data directly from on-chip busses.
But this is needlessly complex and expensive. This
is a USB device after all, and we have a perfectly
good off-chip bus that can already do many things.
In fact, when you attach a USB device to your PC,
it typically hands very small pieces of its firmware
back to the PC in order to identify itself. We think of
these USB Descriptors as data tables, not part of the
firmware at all, but where else would they be stored?
On an embedded device where RAM is so precious,
the descriptor chunks will be copied directly from
Flash or Mask ROM into the USB endpoint buffer.
It’s a tiny engine designed to read parts of firmware
out over USB, and nearly every USB device has code
like this.

If this code is functioning properly, it will read
back only the USB descriptor tables, and nothing
else. If there’s a bug in the size calculation, you
may be able to request more data. If there isn’t
already a bug, you can introduce one via clock or
power glitching.

Introducing a bug at just the right time can be
tricky, so this is where it helped to build a new tool.
Well, a tiny add-on for a masterful existing tool:
the ChipWhisperer-Lite by Colin O’Flynn. The
ChipWhisperer is an open source platform for side-
channel power analysis and glitching. The joy of
having both power analysis and glitching in the same
platform is that they can be on the same reference
clock. With one oscillator, you can deterministically
step your target device through its paces, measure
its activity via the power consumption waveform,
and deliver glitches to specific clock cycles. By re-

moving as many sources of jitter as possible, glitches
can be delivered more reliably to the intended oper-
ation within the target’s firmware.

My humble addon is the FaceWhisperer, a
USB host controller based on the MAX3421E
chip, inspired of course by Travis Goodspeed’s
Facedancer21 tool. Whereas the USB host controller
in your PC will be subject to many influences far
outside your control, the USB host in the FaceWhis-
perer can be precisely synchronized with both the
target device and the ChipWhisperer itself.

Putting everything on the same clock is neces-
sary but not sufficient for cycle-accurate timing re-
peatability. The LC87, like many microcontrollers,
will boot from a free-running RC oscillator before
switching to the external clock under software con-
trol. This means it’s necessary to synchronize with
the running firmware somehow before starting up
the USB host. In this case, I’m using a comparator
input on the FaceWhisperer to precisely wait on a
debug signal that indicates the beginning of a tablet
scanning cycle.

The GET_DESCRIPTOR request we’re interested in
comes in several parts: a SETUP token that describes
what descriptor we’d like to read, some IN tokens
that each ask the device to send back one more
packet, and finally an OUT for acknowledgment.
These phases each drive a forgetful state machine
that wakes up on each interrupt and leaves notes to
itself for what needs to be done to the next packet.
Unlike antique asynchronous serial ports, USB de-
vices can never speak to the host unless they’re of-
fered a timeslot with an IN token, so no matter how
badly we glitch the firmware we do need to follow
this flow in order to read back data from the device.

This firmware extraction glitch works by disrupt-
ing the calculation and/or storage of the descriptor
length, between that SETUP and the first IN. To ex-
tract as much data as possible, the SETUP can have
a length limit of 0xFFFF and the FaceWhisperer can
continue spamming IN tokens until something fails.
With this infrastructure in place, the ChipWhis-
perer’s Glitch Explorer can hone in on timing off-
sets and glitch parameters that give us longer than
usual descriptor responses. By briefly interrupting
power at slightly different timing offsets after the
SETUP packet, a variety of glitched behavior can be
observed.

The descriptor we’ll be reading is the USB Con-
figuration Descriptor, typically one of the longest
descriptors a device will provide. This device has a

32

33

34-byte descriptor that we’ll be trying to glitch into
something much longer. Usually the whole thing
comes back in one packet:

IN
2 09022200010100801 E0904000001030102000921

0001000122920007058103090004
4 rcode 5 t o t a l 34

Sometimes our glitches occur while copying the
IN data itself. These aren’t useful on their own, but
they can give some feedback on how well the glitch
is working:

IN
2 09022200010100801 E0904000001030102000921

21FFFFFFFF20D227FFFFFFFFFF20
4 rcode 5 t o t a l 34

When you’re getting close, you start to see non-
corrupted descriptors that have a longer than ex-
pected length:

IN
2 09022200010100801 E0904000001030102000921

0001000122920007058103090004090222000101
4 0080160904000001030102000921000100012292

000705810309000409023 B000201008016090400
6 0001030102000921000100012292000705810309

0004090401000103000000092100010001220F00
8 07058203400004040309041 E035700610063006F

006D00200043006F002E002C004C00740064002E
10 0010034300540045002 D00340035003000100343

00540045002 D0036003500300010034D00540045
12 002D0034003500300010034D00540045002D0036

00350030006802680168026801680268006803F0
14 00F001F003F00270017002700070037000700370

00B801B800B801B8
16 rcode 5 t o t a l 268

Only a little more of that, and we find a glitched
configuration descriptor that’s 65,534 bytes long,
more than enough to reconstruct the entire 32 kB
firmware ROM. You only get the memory prior to
the descriptor if the address space wraps, but fortu-
nately for us this was the case. All that’s left is to
determine the address offset by looking for clues like
an IVT at the beginning or unused memory near the
end of the image, and correctly align the resulting
32 kB image.

If you’d like to try this technique on your own
devices with the ChipWhisperer, you can grab the

PCB design and source for FaceWhisperer and play
along.12

This sort of side-channel analysis still requires a
bit of PCB surgery in order to set up the device’s
power rails and clock for glitching and monitoring.
It also helps to have a reset signal and some sort
of GPIO that can be used as a timing reference. It
would be interesting future work to see how far this
setup could be reduced. Could the glitching be per-
formed solely via the USB port, even through what-
ever power regulation and conditioning the device
includes?

4.2 Coding in Disappearing Ink

The documentation for the LC87 architecture is
sparse. I eventually found an instruction encoding
table buried in some product-line-specific appendix,
but for a while the only resource I could find was
a freeware toolchain, including a compiler and an
on-chip debugger. I had already taken a look at this
debugger in an attempt to awaken the debug port on
my tablet. It wouldn’t do much without this myste-
rious TCB87-TypeC dongle, but I tried simulating
the TCB87 with a GreatFET that mostly just pre-
tends things are okay and tells this RD87 debugger
whatever it wants to hear. When I get the debugger
to start up, it begins populating the hex views with
zeroes. After a quick look with the USB analyzer, I
easily find the requests that are the same size as the
device’s memory and begin answering those with my
firmware dump. Now I have a debugger that I can
use for static analysis!

I was looking for some kind of update mech-
anism. I would later discover that this tablet
(firmware 1.16) used mask ROM whereas many ear-
lier tablets (1.13) used flash memory. Those 1.13
tablets do seem to have a bootloader of some kind
available, but I haven’t looked into it yet. With the
1.16 tablet I had been analyzing, though, I became
fairly certain there was no intended way to modify
the device’s program memory. This gave me a new
constraint, which turns out to be interesting any-
way: Turn the tablet into an RFID reader without
modifying its firmware. We’ll do this entirely via
RAM and return-oriented programming.

The next step was much easier than expected.
There was plenty of hidden functionality in the
firmware. These are things that aren’t part of any

12git clone https://github.com/scanlime/facewhisperer

unzip pocorgtfo13.pdf facewhisperer.tar.bz2

34

standard and aren’t used by the official drivers, but
presumably exist for factory test purposes. There’s
a mode you can put the tablet in which enables
an additional USB endpoint that returns loads of
timers and internal debug info. Oh, and there’s a
HID request that will just write exactly 16 bytes
into RAM anywhere you like!

I think this was used in conjunction with another
routine that isn’t called anywhere, which tests the
custom silicon Sanyo added for Wacom. Oh, custom
silicon. I was hoping not to find that here. Newer
tablets have chips that are obviously designed by
Wacom to be complete analog frontends. I wanted
to start with an older tablet that would have fewer
custom parts. But perhaps the “W” in LC871W32
stands for Wacom. The analog frontend is made
from discrete components in this tablet; multiplex-
ers to select from an array of coils, op-amps to inte-
grate the received signals, a buffer to excite the coils
with a carrier wave. When I first looked at the cir-
cuit, it seemed like the 750 kHz carrier wave itself as
well as the other timing signals would be generated
using general-purpose peripherals on the micro. But
when I look for the corresponding GPIO pins, noth-
ing. More reverse engineering, and it was clear that
I was facing custom hardware. I’ve been calling it
FEB0h, after its I/O address. At first I thought it
was a serial engine of some sort that was being mis-
used to run the tablet, but now it’s clear that this
hardware is purpose-built. More on that later. For
now, it’s enough to know that the hardware or the
mask ROM itself had enough engineering risk that
they thought it prudent to include such a powerful
test feature.

This is enough to start testing the waters and
building up more and more complex ROP code. The
ROM is only 32kB, and barely half full, but there are
some useful gadgets. We can make function calls, do
memcpy, RAM-to-RAM and ROM-to-RAM. Inter-
rupts are tricky. I tried coexisting with them for a
while, but had to give up on that due to USB packet
corruption issues I couldn’t track down. Write an
arbitrary byte? Look up where we’d find that in
ROM and do a memcpy. Loops are the slowest.
These ROP stack frames can only execute once be-
fore they’re corrupted, so we must copy the code
each time it’s run. It’s slow, but we’re doing arbi-
trary things to this peripheral that we haven’t even
written any code to. We can even return it to nor-
mal operation if we like, by jumping back to the
main loop and restoring a normal stack.

This is not typically the sort of operation your
OS requires elevated privileges for. The underly-
ing Send Feature Report operation is typically as-
sociated with harmless device-specific features like
toggling your keyboard LEDs, not with writing ar-
bitrary instructions to a Turing-complete processor
that is trusted by the OS just as much as you are.
Applications can typically reserve access to any HID
device that doesn’t already have a driver loaded.
It’s easy to imagine some desktop malware that un-
loads or subverts the default driver long enough to
load some malware into a peripheral’s RAM with-
out subsequent detection by either the user or the
driver.

4.3 Amplitude Modulation Alchemy

Wacom pens and passive RFID cards are broadly
similar, in that they both use a resonant LC circuit
to pick up some energy from the reader’s chang-
ing magnetic field, then they send back data bits
with backscatter modulation, selectively shorting
out the coil. The specific mechanism is a bit dif-
ferent though, and it will make our job harder. A
typical 125 kHz RFID reader is sending out either a
continuous carrier, or perhaps sending long bursts a
few times a second to save energy. During this burst,
the reader is continuously listening for a modulated
response, with hardware filters specifically tuned to
this job.

35

Wacom tablets, by contrast, are all about se-
quentially scanning an array of coils. This CTE-450
tablet has 12 short and wide horizontal coils on the
front side (Y00 through Y11) and 17 tall and thin
vertical coils on the back side (X00 to X16). When it
has no idea where the pen might be, it has to scan
everywhere. After locating the pen, it can adjust
the scanning pattern to take differential measure-
ments from the tablet coils nearest the pen coil. In-
stead of transmitting and receiving simultaneously,
the filtering can be simplified by toggling between
two modes. When transmitting, a 74HC125 buffer
drives the coil with the tablet’s carrier wave. During
this time, the analog integrator is zeroed. Then the
tablet switches modes, and begins integrating the
received signal.

These resonant LC circuits are like electromag-
netic tuning forks. An RFID tag or a Wacom
pen have a tuning fork at a specific frequency, and
some circuitry that communicates each bit by either
damping the oscillations or letting them ring. The
Wacom tablet shouts at the tuning fork’s frequency,
quickly and abruptly, and immediately listens for
the reverberation. The whole protocol is designed
around this mode switch. Gaps in the carrier in-
dicate the bit boundaries, and longer bursts divide
packets.

The trick here is to use this mechanism to read
some common RFID access card. Between the slow
return-oriented programming and the limited ana-
log frontend, I picked an easy target for the PoC.
The EM4100 is a common 125 kHz tag with a fixed
40-bit ID. It’s no more secure than a pin tumbler
lock for sure, but it isn’t too far from the tags used
in many access control systems.

The EM4100 pads the 40-bit code out to a 64-bit
repeating pattern with the addition of a 9-bit header
and a matrix of parity bits. Each bit is Manchester
encoded; 0 becomes 10, 1 becomes 01. Each half-bit
lasts 32 clock cycles, giving us a conveniently slow
data rate.

The pulsed carrier is a problem. The RFID card
does have its little tuning fork, and it keeps ringing
a little bit, but not as much as you might think, es-
pecially when the EM4100 chip is trying to power
itself from this stored energy and the external car-
rier has disappeared. A clock cycle or two, but not
nearly as long as the tablet’s A/D conversion takes.
This little bit of unpredictability, though, has so far
foiled every plan of mine to stay in sync with the
signal in order to sample it at or below the bit rate.
My workaround has been to use a short enough car-
rier pulse in order to have multiple samples per bit,
allowing me to occasionally use a pile of filters and
heuristics to recover the correct bits with appropri-
ate deference to Nyquist. The problem with using
a shorter carrier pulse is that it lowers our carrier
duty cycle, delivering less power to the RFID card.
So, there’s a delicate balance: long enough to power
the card, short enough for the resulting data to be
intelligible through this intermittent sampling.

The returned signal is quite weak, since the
tablet’s filters are looking for resonance at a very
different frequency. This is an area where I’ve seen
much difference between individual RFID tags. Un-
der unrealistic conditions, with the RFID tag placed
directly on the tablet circuit board, many tags read
successfully without much trouble. With an unmod-
ified and fully assembled tablet, I’ve had very diffi-
cult to reproduce results, occasionally reading only
one of the several tags I tried the setup with.

If you want to try this experiment or others, you
can find my simple ROP toolkit and signal process-
ing for the CTE-450 and try your luck with the
return-oriented analog hacking.13

4.4 More to do

Although so far I’ve only managed to transform this
tablet into an extremely bad RFID reader, I think
this shows that the overall approach may lead some-
where. The main limitations here are in the reliance
on slow ROP, and the relatively low quality A/D
converter on the LC871. I’ve done my best to try

13git clone https://github.com/scanlime/cte450-homebrew/

unzip pocorgtfo13.pdf cte450-homebrew.tar.bz2

36

and separate the signal from the noise, but I’m no
DSP guru. It’s possible that a signal processing ex-
pert could be snooping tags with a better success
rate than I’ve been seeing. As a proof of concept,
this shows that the transformation from tablet to
RFID reader is theoretically doable, though with-
out a significant improvement in range it’s hard to
imagine this approach succeeding at reading access
cards casually left against a victim’s graphics tablet.

It could be interesting to examine newer tablets.
The custom silicon in FEB0h turned out to be one of
the best things about the CTE-450 tablet, making it
relatively easy to change the timing and carrier fre-
quency. If newer tablets have a nicer A/D converter
and a programmable filter on the receive path, they
could make a decent RFID reader indeed. A brief
look at my newer Intuos Pro tablet shows a Renesas
processor that likely has reprogrammable flash.

There’s certainly more work to do in discov-
ering the scope of devices vulnerable to glitched

GET_DESCRIPTOR requests. What other devices that
we usually think of as black-box peripherals might
have firmware that can be read out, or RAM that
we can temporarily hide code in?

It may be possible to mitigate these glitched
GET_DESCRIPTOR firmware readouts by adding ad-
ditional verification steps in the device’s USB stack,
which would each also need to be glitched. Reducing
the number of invalid states that eventually result
in spilling data will make the glitching process much
more tedious.

In practice, though, I would argue that the best
security is not to rely on secret firmware at all. Al-
gorithms shouldn’t need secrecy to keep them se-
cure. Debug features that are too dangerous to
leave should be disabled, not hidden. If any sensitive
data must be reachable from the CPU, it should be
unmapped whenever possible, especially when some
USB controller asks for your life story.

37

5 Decoding AMBE+2 in MD380 Firmware in Linux

by Travis Goodspeed KK4VCZ

with kind thanks to DD4CR, DF8AV, and AB3TL

Howdy y’all,

In PoC‖GTFO 10:8, I shared with you fine folks
a method for extracting a cleartext firmware dump
from the Tytera MD380. Since then, a rag-tag gang
of neighbors has joined me in hacking this device,
and hundreds of amateur radio operators around
the world are using our enhanced firmware for DMR
communications.

AMBE+2 is a fixed bit-rate audio compression
codec under some rather strict patents, for which
the anonymously-authored Digital Speech Decoder
(DSD) project14 is the only open source decoder. It
doesn’t do encoding, so if for example you’d like to
convert your favorite Rick Astley tunes to AMBE
frames, you’ll have to resort to expensive hardware
converters.

In this article, I’ll show you how I threw to-
gether a quick and dirty AMBE audio decompressor
for Linux by wrapping the firmware into a 32-bit
ARM executable, then running that executable ei-
ther natively or through Qemu. The same tricks
could be used to make an AMBE encoder, or to
convert nifty libraries from other firmware images
into handy command-line tools.

This article will use an MD380 firmware image
version 2.032 for specific examples, but in the spirit
of building our own bird feeders, the techniques
ought to apply just as well to your own firmware
images from other devices.

– — — – — — — — – — –

Suppose that you are reverse engineering a
firmware image, and you’ve begun to make good
progress. You know where plenty of useful func-
tions are, and you’ve begun to hook them, but now
you are ready to start implementing unit tests and
debugging chunks of code. Wouldn’t it be nicer to
do that in Unix than inside of an embedded system?

As luck would have it, I’m writing this article
on an aarch64 Linux machine with eight cores and
a few gigs of RAM, but any old Raspberry Pi or
Android phone has more than enough power to run
this code natively.

Be sure to build statically, targeting
arm-linux-gnueabi. The resulting binary will run
on armel and aarch64 devices, as well as damned

near any Linux platform through Qemu’s userland
compatibility layer.

5.1 Dynamic Firmware Loading

First, we need to load the code into our process.
While you can certainly link it into the executable,
luck would have it that GCC puts its code sections
very low in the executable, and we can politely ask
mmap(2) to load the unpacked firmware image to
the appropriate address. The first 48kB of Flash
are used for a recovery bootloader, which we can
conveniently skip without consequences, so the load
address will be 0x0800c000.

s i ze_t l ength =994304;
2 int fd=open (" experiment . img" ,0) ;

void ∗ f i rmware=mmap(
4 (void ∗) 0x0800c000 , length ,

PROT_EXEC|PROT_READ|PROT_WRITE,
6 MAP_PRIVATE, // f l a g s

fd , // f i l e
8 0 // o f f s e t

) ;

Additionally, we need the 128kB of RAM at
0x20000000 and 64kB of TCRAM at 0x10000000

that the firmware expects on this platform. Since
we’d like to have initialized variables, it’s usually
better go with dumps of live memory from a running
system, but /dev/zero works for many functions if
you’re in a rush.

14git clone https://github.com/szechyjs/dsd

38

1 //Load an SRAM image .
int fdram=open ("ram . bin " ,0) ;

3 void ∗sram=mmap(
(void ∗) 0x20000000 ,

5 (s i ze_t) 0x20000 ,
PROT_EXEC|PROT_READ|PROT_WRITE,

7 MAP_PRIVATE, // f l a g s
fdram , // f i l e

9 0 // o f f s e t
) ;

11
//Create an empty TCRAM region .

13 int fdtcram=open ("/dev/ zero " ,0) ;
void ∗ tcram=mmap(

15 (void ∗) 0x10000000 ,
(s i z e_t) 0x10000 ,

17 PROT_READ|PROT_WRITE, // p ro t e c t i on s
MAP_PRIVATE, // f l a g s

19 fdtcram , // f i l e
0 // o f f s e t

21) ;

5.2 Symbol Imports

Now that we’ve got the code loaded, calling it is as
simple as calling any other function, except that our
C program doesn’t yet know the symbol addresses.
There are two ways around this:

The quick but dirty solution is to simply cast a
data or function pointer. For a concrete example,
there is a null function at 0x08098e14 that sim-
ply returns without doing anything. Because it’s
a Thumb function and not an ARM function, we’ll
have to add one to that address before calling it at
0x08098e15.

void (∗ nu l l sub) ()=(void ∗) 0x08098e15 ;
2

p r i n t f ("Trying to c a l l nu l l sub () . \ n") ;
4 nu l l sub () ;

p r i n t f (" Success ! \ n") ;

Similarly, you can access data that’s in Flash or
RAM.

1 p r i n t f ("Manufacturer i s : ’%s ’\n" ,
0 x080f9e4c) ;

Casting function pointers gets us part of the way,
but it’s rather tedious and wastes a bit of memory.
Instead, it’s more efficient to pass a textfile of sym-
bols to the linker. Because this is just a textfile, you

can easily export symbols by script from IDA Pro
or Radare2.

The symbol file is just a collection of assignments
of names to addresses in roughly C syntax.

/∗ Populates the audio b u f f e r ∗/
2 ambe_decode_wav = 0x08051249 ;

/∗ Just re turns . ∗/
4 nu l l sub = 0x08098e15 ;

You can include it in the executable by passing
GCC parameters to the linker, or by calling ld di-
rectly.

CC=arm−l inux−gnueabi−gcc−6 −s t a t i c −g
2 $ (CC) −o test test . c \

−Xl inker −−ju s t−symbols=symbols

Now that we can load the firmware into process
memory and call its functions, let’s take a step back
and see a second way to do the linking, by rewrit-
ing the firmware dump into an ELF object and then
linking it. After that, we’ll get along to decoding
some audio.

5.3 Static Firmware Linking

While it’s nice and easy to load firmware with
mmap(2) at runtime, it would be nice and correct
to convert the firmware dump into an object file for
static linking, so that our resulting executable has
no external dependencies at all. This requires both
a bit of objcopy wizardry and a custom script for
ld.

First, let’s convert our firmware image dump to
an ELF that loads at the proper address.

1 arm−l inux−gnueabi−objcopy \
−I b inary experiment . img \

3 −−change−addre s s e s=0x0800C000 \
−−rename−s e c t i o n . data=. experiment \

5 −O e l f 32−l i t t l e a rm −B arm experiment . o

Sadly, ld will ignore our polite request
to load this image at 0x08000C000, be-
cause load addresses in Unix are just po-
lite suggestions, to be thrown away by the
linker. We can fix this by passing -Xlinker

–section-start=.experiment=0x0800C000 to gcc

at compile time, so ld knows to place the section at
the right address.

Similarly, the SRAM image can be embedded at
its own load address.

39

40

5.4 Decoding the Audio

To decode the audio, I decided to begin with the
same .amb format that DSD uses. This way, I could
work from their reference files and compare my de-
coding to theirs.

The .amb format consists of a four byte header
(2e 61 6d 62) followed by eight-byte frames. Each
frame begins with a zero byte and is followed by
49 bits of data, stored most significant bit first with
the final bit in the least significant bit of its own
byte.

To have as few surprises as possible, I take the
eight packed bytes and extract them into an array of
49 shorts located at 0x20011c8e, because this is the
address that the firmware uses to store its buffer.
Shorts are used for convenience in addressing dur-
ing computation, even if they are a bit more verbose
than they would be in a convenient calling conven-
tion.

1 //Re−use the firmware ’ s own AMBE bu f f e r .
short ∗ambe=(short ∗) 0 x20011c8e ;

3
int ambei=0;

5 for (int i =1; i <7; i++){// Skip f i r s t by te .
for (int j =0; j <8; j++){

7 //MSBit f i r s t
ambe [ambei++]=(packed [i]>>(7− j))&1;

9 }
}

11 //Final b i t in i t s own frame as LSBit .
ambe [ambei++]=packed [7]&1 ;

Additionally, I re-use the output buffers to store
the resulting WAV audio. In the MD380, there are
two buffers of audio produced from each frame of
AMBE.

//80 samples f o r each audio b u f f e r
2 short ∗ outbuf0=(short ∗) 0x20011aa8 ;

short ∗ outbuf1=(short ∗) 0x20011b48 ;

The thread that does the decoding in firmware is
tied into the MicroC/OS-II realtime operating sys-
tem of the MD380. Since I don’t have the timers and
interrupts to call that thread, nor the I/O ports to
support it, I’ll instead just call the decoding routines
that it calls.

1 //Placed at 0x08051249
int ambe_decode_wav(

3 signed short ∗wavbuffer ,
signed int e ighty , // always 80

5 short ∗ b i t bu f f e r , //0x20011c8e
int a4 , //0

7 short a5 , //0
short a6 , // t imes l o t , 0 or 1

9 int a7 //0x20011224
) ;

For any parameter that I don’t understand, I
just copy the value that I’ve seen called through my
hooks in the firmware running on real hardware. For
example, 0x20011224 is some structure used by the
AMBE code, but I can simply re-use it thanks to
my handy RAM dump.

Since everything is now in the right position, we
can decode a frame of AMBE to two audio frames
in quick succession.

//One AMBE frame becomes two audio frames .
2 ambe_decode_wav(

outbuf0 , 80 , ambe ,
4 0 , 0 , 0 ,

0x20011224
6) ;

ambe_decode_wav(
8 outbuf1 , 80 , ambe ,

0 , 0 , 1 ,
10 0x20011224

) ;

After dumping these to disk and converting to
a .wav file with sox -r 8000 -e signed-integer

-L -b 16 -c 1 out.raw out.wav, a proper audio
file is produced that is easily played. We can now
decode AMBE in Linux!

41

5.5 Runtime Hooks

So now we’re able to decode audio frames, but this is
firmware, and damned near everything of value ex-
cept the audio routines will eventually call a function
that deals with I/O—a function we’d better replace
if we don’t want to implement all of the STM32’s
I/O devices.

Luckily, hooking a function is nice and easy. We
can simply scan through the entire image, replac-
ing all BX (Branch and eXchange) instructions to
the old functions with ones that direct to the new
functions. False positives are a possibility, but we’ll
ignore them for now, as the alternative would be to
list every branch that must be hooked.

The BL instruction in Thumb is actually two ad-
jacent 16-bit instructions, which load a low and high
half of the address difference into the link register,
then BX against that register. (This clobbers the
link register, but so does any BL, so the register use
is effectively free.)

1 /∗ Ca l cu l a t e s Thumb code to branch from
one address to another . ∗/

3 int c a l c b l (int adr , int t a r g e t) {
/∗ Begin with the d i f f e r e n c e o f the t a r g e t

5 and the PC, which po in t s to j u s t a f t e r
the current i n s t r u c t i o n . ∗/

7 int o f f s e t=target−adr −4;
//LSBit doesn ’ t count .

9 o f f s e t =(o f f s e t >>1) ;

11 /∗ The BL in s t r u c t i o n i s a c t u a l l y two
Thumb in s t r u c t i on s , wi th one s e t t i n g

13 the h igh par t o f the LR and the other
s e t t i n g the low part wh i l e swapping

15 LR and PC. ∗/
int hi=0xF000 | ((o f f s e t&0xFFF800)>>11) ;

17 int l o=0xF800 | (o f f s e t&0x7FF) ;

19 //Return the pa i r as a s i n g l e 32− b i t word .
return (lo <<16) | h i ;

21 }

Now that we can calculate function call instruc-
tions, a simple loop can patch all calls from one ad-
dress into calls to a second address. You can use this
to hook the I/O functions live, rather than trapping
them.

5.6 I/O Traps

What about those I/O functions that we’ve forgot-
ten to hook, or ones that have been inlined to a
dozen places that we’d rather not hook? Wouldn’t
it sometimes be easier to trap the access and fake
the result, rather than hooking the same function?

You’re in luck! Because this is Unix, we can sim-
ply create a handler for SIGSEGV, much as Jeffball
did in PoC‖GTFO 8:8. Your segfault handler can
then fake the action of the I/O device and return.

Alternately, you might not bother with a proper
handler. Instead, you can use GDB to debug the
process, printing a backtrace when the I/O region
at 0x40000000 is accessed. While GDB in Qemu
doesn’t support ptrace(2), it has no trouble trap-
ping out the segmentation fault and letting you
know which function attempted to perform I/O.

5.7 Conclusion

Thank you kindly for reading my ramblings about
ARM firmware. I hope that you will find them
handy in your own work, whenever you need to work
with reverse engineered firmware away from its own
hardware.

If you’d like to similarly instrument Linux ap-
plications, take a look at Jonathan Brossard’s
Witchcraft Compiler Collection,15 an interactive
ELF shell that makes it nice and easy to turn an
executable into a linkable library.

The emulator from this article has now been in-
corporated into my md380tools16 project, for use in
Linux.

Cheers from Varaždin, Croatia,
–Travis 6A/KK4VCZ

15git clone https://github.com/endrazine/wcc

unzip pocorgtfo13.pdf wcc.tar.bz2
16git clone https://github.com/travisgoodspeed/md380tools

42

6 Password Weaknesses in Physical Security:

Silliness in Three Acts

by Evan Sultanik

Dramatis Personæ

Disembodied Voice of Pastor Manul Laphroaig Bard

Alice Feynman Disciple of the Church of Weird Machines

Bob Schrute Assistant to the Facility Security Officer

Havva al-Kindi . Alice’s Old and Wise Officemate

The Ghost of Paul Erdős . Keeper of The Book

Act I: Memorize, Don’t Compromise

Pastor: In the windowless bowels of a nonde-
script, Class A office building entrenched in-
side the Washington, D.C. beltway, we meet
our heroine, Alice Feynman, lost on her way
to a meeting with the Facility Security Officer.

Alice: Excuse me, which way is it to the secu-
rity office?

Bob: You must be the new hire. Bob Schrute,
assistant FSO. I can take you there right after
I finish with this. . .

Alice: Alice. Nice to meet you. What’re you
doing?

Bob: Kaba Mas X-09 high security spin-lock.
It’s DSS-approved for use in our SCIFs. I’m
resetting this one’s passcode.

Alice: [Blank Stare]

Bob: U.S. Department of Defense (DoD) De-
fense Security Service (DSS). Sensitive Com-
partmented Information Facilities (SCIFs).
The rooms where we are allowed to store and
process classified information?

Alice: I see. I noticed those things all over this
building.

Bob: They’re ubiquitous. You’ll see them any-
where in the country there’s classified work go-
ing on. One on each door, and another on each
safe. Super secure, too. Security in this office
is no joke.

Alice: How do they work?

Bob: [Throwing Alice the lock’s manual.] They
run off of the electricity generated from spin-
ning them, so you need to spin them a bit to
get started. You see? The LCD on top shows
you the current number. You enter three two-
digit numbers. First one clockwise, second
counter-clockwise, third clockwise, and then
a final spin counter-clockwise to open. That’s
the passcode.

Alice: [Flipping through the manual.] Does
each lock get a different passcode?

Bob: Yes. That’s why we have this [handing

Alice a magnet stuck to the side of the door].

Alice: Ah I see. It’s a phone keypad. So you
use a mnemonic to remember each passcode?

Bob: Exactly. [Pointing to a poster on the wall

with his own mugshot and memetic letters em-

blazoning “MEMORIZE, DON’T COMPRO-

MISE”, he sternly repeats that slogan:] Mem-

orize, don’t compromise.

Alice: [“Is this guy serious?” face.]

Bob: You think you could crack it? FALSE.
[Flamboyantly produces a pocket calculator

that had been hidden somewhere on his per-

son.] Three two-digit numbers. That’s 100
times 100 times 100, so . . . there are a mil-
lion possible codes. I’ve set this to have a
timeout of four minutes after each failed at-
tempt. So, trying all possible combinations

43

would take . . . [furiously punching at the calcu-

lator] . . . almost eight years! We change each
code once every couple months, so even if you
could continuously try codes for eight hours
a day, you’d have . . . [more furious punching]
. . . about seven tenths of one percent chance
of getting the code right.

Alice: [Handing the manual back.] I didn’t see
anything in here about an automatic lockout
after too many failed attempts.

Bob: [Pointing to his minuscule biceps.] These
provide the lockout.

Alice: Are you ready to take me to the security
office now?

Bob: Fine.

Act II: Surely You’re Joking

Pastor: Two weeks later, Alice has settled into
her office, which she shares with Havva al-
Kindi. She hasn’t had a chance to play with
those nifty locks at all yet; her clearance is still
being processed. Most of her time is spent
idling or doing busy-work while she waits to
be approved to work on a real project.

Alice: [On her desk phone] Yes. Yes, no prob-
lem. By close of business today. No problem.
Bye.

Pastor: As Alice hangs up the phone, she no-
tices something odd about the keypad, and
immediately remembers the magnet Bob had
showed her.

Alice: [Gets up and starts drawing on her

whiteboard.]

0

8

tuv

5

jkl

2

abc
1 3

def

4

ghi
6

mno

7

pqrs
9

wxyz

Havva: What are you doing?

Alice: Did you ever notice that the numbers
zero and one don’t have any letters on the
phone?

Havva: Sure! You’re probably too young to
have ever used a rotary phone, right? Back
when phone numbers were only seven dig-
its long, the first two numbers represented
the exchange, and a mnemonic was given
to each exchange. [Singing and tapping on

her desk] Bum-dah-bum bah-duh-bum bahhh

dummm! PEnnsylvania Six Five Thousand!

No? It was a big Glenn Miller hit! My par-
ents used to play it all the time when I was a
kid. That song is referring to the phone num-
ber for the Hotel Pennsylvania in New York,
which to this day is still (212) PE6-5000.

Alice: Oh yeah! I went there once for HOPE.

Havva: Hope? Anyhow, for various reasons,
the numbers zero and one were never used in
exchanges, which meant they never occurred
at the beginning of phone numbers, which
meant they couldn’t have letters associated
with them.

44

Alice: Interesting! [Continuing on the white-

board] 86 = . . . [a pause to consult her com-

puter] 262144. 1 − 262144 ÷ 1000000 =
. . . 0.738. Wow! So, if there are only eight
buttons with letters, that reduces the number
of possible phone numbers associated with six-
letter mnemonics by 74% compared to if all the
buttons had letters!

Havva: I guess that’s true. There are also cer-
tain phone numbers you’ll never be able to
have English mnemonics for, because the but-
tons for 5, 7, and 9 don’t have any vowels. So
you can’t make a mnemonic for a phone num-
ber that only uses those three numbers.

Alice: Wow, yeah, that’s another 36 = . . .
[quickly doing some math in her head this

time] 729 codes that don’t have mnemonics.

Havva: Codes?

Alice: Er, I mean “phone numbers.”

Havva: I’ll bet there are certain “codes” that
don’t have any English words associated with
them. Plus, letters in English words don’t all
occur at the same frequency: It’s much more
likely that a word will have the letter “e” than
it will have the letter “x.”

Alice: [Opens up a terminal on her computer.]
$ grep ’^.\{6\}$’ /usr/share/dict/words | wc -l

17706

$ echo `!!` / 1000000 | bc -l

.01770600000000000000

Pastor: And thus, Alice had discovered that
fewer than 2% of the million possible codes
actually map to English words.

Alice: [Once again at the whiteboard.]

HA CK ER
42 25 34

[Back at the computer.]
$ grep -i ’^.\{4\}er$’ /usr/share/dict/words \

| wc -l

1562

About 10% of six-letter English words end
with the letters “ER”!

[Back at the board, with long pauses.]

DO SA GE
36 72 43
EN RA GE
36 72 43
FO RA GE
36 72 43
FO RB ID
36 72 43

Pastor: And many words share the same code.
In fact, Alice quickly wrote a script to count
the number of unique codes possible from six-
letter English words17.

Alice: There are only 14684 possible codes to
check! That would take . . . only about 40 days
to brute-force crack!

Act III: The Book

Pastor: Later that day, Alice is at her favorite
dive, decompressing with some of her side
projects.

Paul: [Sits down next to Alice at the bar. Wheel

of Fortune is playing on an ancient CRT.]
Television is something the Russians invented
to destroy American education.

Alice: [Tippling a brown liquor, neat, while

working on her laptop. Paul’s comment draws

her attention to the TV. Alice notices that

some letters are given away “for free” and re-

members what Havva had said about letter fre-

quency. She quickly grabs her notebook and

jots down the letters as a reminder.] R, S, T,
L, N, E.

Paul: [Noticing Alice’s notebook.] Yes, these
are very common letters in English. My native
language does not use “r” as much. But what
do I know about English? I learned it from
my father, who taught it to himself by reading
English novels in one of Joe’s Gulags. [Awk-

ward pause while Alice struggles with how to

respond.] Have you discovered anything beau-
tiful? [Pointing into her notebook.]

Alice: Oh that? I’ve been thinking about
mnemonics for passcodes.

17$ grep ’^.\{6\}$’ /usr/share/dict/words | tr ’[:upper:]’ ’[:lower:]’ | sed ’s/[abc]/2/g; s/[def]/3/g;

s/[ghi]/4/g; s/[jkl]/5/g; s/[mno]/6/g; s/[pqrs]/7/g; s/[tuv]/8/g; s/[wxyz]/9/g’ | sort | uniq | wc -l

45

Paul: [Pointing to the drink:] That poison will
not help you. [Produces a small pill bottle out

of his shirt pocket, raises it to eye level, drops

it, and then catches it with the same hand be-

fore it hits the bar.]

Alice: Haven’t you heard? The Ballmer Peak

is real! Or at least that’s what I read on Stack
Exchange.

Paul: Pál Erdős. My brain is open.

Pastor: Alice introduces herself and proceeds
to explain all of her findings to Paul.

Alice: . . .and I just finished sorting the 14684
distinct codes by the number of words associ-
ated with them. That way, if I try the codes
in order of decreasing word associations, then
it will maximize my chances of cracking the
code sooner than later.

Paul: Yes, if codewords are chosen uniformly
from all six-letter English words. Can I see
the distribution of word frequency? [Grabbing

a napkin, stealing Alice’s pen, and scribbling

some notes.] Using your method, after fewer
than 250 attempts, there is a 5% probability
that you will have cracked the code. After
about 5700 attempts, there will be a 50% prob-
ability of success.

Alice: [Typing on her computer.] That’s only
about 16 days!

Pastor: An adversary with intermittent access
to the lock—for example, after hours—could
quite conceivably crack the code in less than a
month.

Paul: If there exists a method that allows the
code-breaker to detect whether each succes-
sive two-digit subcode is correct before enter-
ing the next two-digit subcode,. . .

Pastor: . . .otherwise known as a “vulnerability” . . .

Paul: . . .[annoyed about having been inter-

rupted, even if by the disembodied voice of

a narrator] then the expected value for the
length of time required to crack the code is on
the order of minutes. [Mumbling toward the

fourth wall:] That Pastor is more annoying
than the SF.

Alice: What?

Paul: SF means “Supreme Fascist.” This would
show that God is bad. I do not claim that
this is correct, or that God exists. It is just a
sort of half-joke. There is an anecdote I once
heard. Suppose Israel Gelfand and his advisor,
Andrei Kolmogorov, were to both arrive in a
country with a lot of mountains. Kolmogorov
would immediately try and climb the highest
mountain. Gelfand would immediately start
building roads. What would you do?

Alice: I would learn to fly an airplane so I could
discover new mountain ranges. What about
you?

Paul: Some might say that is what I do. My
friends might add that they pay for the fuel.
But really, I just try to keep the SF’s score
low. How can we create mnemonics that are
not vulnerable to your attack?

Alice: Well, I guess the first thing to do is cre-
ate a keypad layout that uses zero and one.

Paul: Yes, but my academic sibling Pólya
would say that we first need to understand
the problem. Ideally, we want a keypad lay-
out that produces an injective mapping from
the six-letter English words into the natural
numbers from zero to one million.

Alice: Injective?

Paul: Such that no two words produce the same
code number.

Alice: Is that even possible?

Paul: I do not know. I believe this is an in-
stance of the multiple subset sum problem, re-
lated to the knapsack problem.

Alice: Ah yeah, I remember that from my al-
gorithms class. It’s NP-Complete, right?

Paul: Yes, and likely intractable for problems
even as small as this one. The total number
of possible keypad mappings is 100 million bil-
lion billion. But it is easy for us to check the
pigeons.

Alice: Huh?

Paul: The pigeonhole principle. For any subset
of m letters within a word, there can be at
most 106−m words that have that pattern of

46

letters. If there are more, then there must be
a collision, no matter the mapping we choose.

Alice: Ah, I see. That’s easy enough to check!
[Typing.]

1 for m in range (2 , 6) :
h i t s = {}

3 for word in words :
for i ndexes in i t e r t o o l s .

combinat ions (range (len (word)) , m) :
5 key = tuple ((word [i] , i)

for i in i ndexes)
i f key not in h i t s :

7 h i t s [key] = 1
else :

9 h i t s [key] += 1
max_hits = 10∗∗(6−m)

11 for key , h in h i t s . i t e r i t em s () :
i f h <= max_hits :

13 continue

k = [’ . ’ for i in range (6)]
15 for c , i in key :

k [i] = c
17 print "" . j o i n (k) , h − max_hits

So, there are fourteen five-letter suffixes like
“inder”, “aggle”, and “ingle” that will all pro-
duce at least one collision. I guess there’s no
way to make a perfect mapping.

Paul: Gelfand advised Endre Szemerédi. This
problem is reminiscent of Szemerédi’s use of
expander graphs in pseudo-random number
generation. What we want to do is take a rel-
atively small set of inputs (being the six-letter
English words) and use an expander graph as
an embedding into the natural numbers be-
tween one and a million, such that the result-
ing distribution mimics uniformity.

Alice: That sounds . . . difficult.

Paul: Constructing expander graphs is ex-
tremely difficult. But I think Szemerédi would
agree that interesting things rarely happen in
fewer than five dimensions.

Alice: I am a pragmatist. How about we use
a genetic algorithm to evolve a near optimal
mapping?

Paul: Such a solution would not be from The

Book, but it would provide you with a map-
ping.

Alice: What book?

Paul: The Book in which the SF keeps all of the
most beautiful solutions.

Alice: Well, I think I’ll try my hand at a scruffy
genetic algorithm. I need a decent mapping if
I ever want to publish this in PoC‖GTFO!

Paul: What is PoC‖GTFO?

Alice: It’s. . . I guess it’s a sort of bible.

Paul: Then the only difference between your
Book and mine are the fascists who created
them. Maybe we will continue tomorrow . . . if
I live.

Alice: [Looking up from her keyboard.] Can I
buy you a drink? [Paul has vanished.]

Pastor: The moral of the story, dear neighbors,
is not that these locks are inherently vulnera-
ble; if used properly, they are in fact incredibly
secure. We must remember that these locks
are only as secure as the codes humans choose
to assign to them. Using a phone keypad map-
ping on six-letter English dictionary words is
the physical security equivalent of a website
arbitrarily limiting passwords to eight charac-
ters.

0

ot

8

jmuy

5

fn

2

bex
1

avwz
3

cl

4

dhq
6

gs

7

ip
9

kr

‖PoC GTFO

✁

✁

✁

✁

Don’t

Memorize,

Compromise

Самиздат

47

7 Reverse Engineering the LoRa PHY

by Matt Knight

It’s 2016, and everyone’s favorite inescapable buz-
zword is IoT, or the “Internet of Things.” The mere
mention of this phrase draws myriad reactions, de-
pending on who you ask. A marketing manager
may wax philosophical about swarms of connected
cars eradicating gridlock forever, or the inevitability
of connected rat traps intelligently coordinating to
eradicate vermin from midtown Manhattan,18 while
a security researcher may just grin and relish in the
plethora of low-power stacks and new attack surfaces
being applied to cyber-physical applications.

IoT is marketing speak for connected embedded
devices. That is, inexpensive, low power, resource
constrained computers that talk to each other, possi-
bly on the capital-I Internet, to exchange data and
command and control information. These devices
are often installed in hard to reach places and can
be expected to operate for years. Thus, easy to con-
figure communication interfaces and extreme power
efficiency are crucial design requirements. While 2G
cellular has been a popular mechanism for connect-
ing devices in scenarios where a PAN or wired tech-
nology will not cut it, AT&T’s plans to sunset 2G
on January 1, 2017 and LTE-M Rel 13’s distance
to widespread adoption presents an opportunity for
new wireless specifications to seize market share.

LoRa is one such nascent wireless technology
that is poised to capture this opportunity. It is a
Low Power Wide Area Network (LPWAN), a class of
wireless communication technology designed to con-
nect low power embedded devices over long ranges.
LoRa implements a proprietary PHY layer; there-
fore the details of its modulation are not published.

This paper presents a comprehensive blind sig-
nal analysis and resulting details of LoRa’s PHY,
chronicles the process and pitfalls encountered along
the way, and aspires to offer insight that may assist
security researchers as they approach their future
unknowns.

7.1 Casing the Job

I first heard of LoRa in December 2015, when it
and other LPWANs came up in conversation among
neighbors. Collectively we were intrigued by its ad-
vertised performance and unusual modulation, thus
I was motivated to track it down and learn more.
In the following weeks, I occasionally scanned the
900 MHz ISM spectrum for signs of its distinctive
waveform (more on that soon), however searches in
the New York metropolitan area, Boston, and a col-
league’s search in San Francisco yielded no results.

Sometime later I found myself at an IoT security
meetup in Cambridge, MA that featured representa-
tives from Senet and SIGFOX, two major LPWAN
players. Senet’s foray into LoRa started when they
sought to remotely monitor fluid levels in home heat-
ing oil tank measurement sensors to improve the ex-
isting process of sending a guy in a truck to read it
manually. Senet soon realized that the value of this
infrastructure extended far beyond the heating oil
market and has expanded their scope to becoming
a IoT cellular data carrier of sorts. While following
up on the company I happened upon one of their
marketing videos online. A brief segment featured a
grainy shot of a coverage map, which revealed just
enough to suggest the presence of active infrastruc-
ture in Portsmouth, NH. After quick drive with my
Ettus B210 Software Defined Radio, I had my first
LoRa captures.

7.2 First Observations and OSINT

LoRa’s proprietary PHY uses a unique chirp spread
spectrum (CSS) modulation scheme, which encodes
information into RF features called chirps. A chirp

18LoRaWan in the IoT Industrial Panel, presentation by Jun Wen of Cisco.

48

Figure 11. Spectrogram of a LoRa packet.

is a signal whose frequency is increasing or decreas-
ing at a constant rate, and they are unmistakable
within the waterfall. A chirp-based PHY is shown
in Figure 11.

Contrasted with FSK or OFDM, two common
PHYs, the differences are immediately apparent.

Modulation aside, visually inspecting a spectro-
gram of LoRa’s distinct chirps reveals a PHY struc-
ture that is similar to essentially all other digital
radio systems: the preamble, start of frame delim-
iter, and then the data or payload.

Since LoRa’s PHY is proprietary, no PHY layer
specifications or reference materials were available.
However, thorough analysis of open source and read-
ily available documentation can greatly abbreviate
reverse engineering processes. When I conducted
this investigation, a number of useful documents
were available.

First, the Layer 2+ LoRaWAN stack is pub-
lished, containing clues about the PHY.

Second, several application notes were available
for Semtech’s commercial LoRa modules.19 These
were not specs, but they did reference some PHY-
layer components and definitions.

Third, a European patent filing from Semtech
described a CSS modulation that could very well be
LoRa.

Finally, neighbors who came before me had
produced open-source prior art in the form of
a partial rtl-sdrangelove implementation and
a wiki page,20 however in my experience the
rtl-sdrangelove attempt was piecemeal and ne-
glected and the wiki contained only high level ob-
servations. These were not enough to decode the
packets that I had captured in New Hampshire.

7.3 Demodulation

OSINT gathering revealed a number of key defi-
nitions that informed the reverse engineering pro-
cess. A crucial notion is that of the spreading fac-
tor (SF): the spreading factor represents the num-
ber of bits packed into each symbol. A symbol,
for the unordained, is a discrete RF energy state
that represents some quantity of modulated infor-
mation (more on this later.) The LoRaWAN spec
revealed that the chirp bandwidth, that is the width
of the channel that the chirps traverse, is 125 kHz,

19Semtech AN1200.18, AN1200.22.
20Decoding LoRa on the RevSpace Wiki

49

250 kHz, or 500 kHz within American deployments.
The chirp rate, which is intuitively the first deriva-
tive of the signal’s frequency, is a function of the
spreading factor and the bandwidth: it is defined as

bandwidth/2(spreading_factor). Additionally, the
absolute value of the downchirp rate is the same as
the upchirp rate.21

Back to the crucial concept of symbols. In LoRa,
symbols are modulated onto chirps by changing the
instantaneous frequency of the signal – the first
derivative of the frequency, the chirp rate, remains
constant, while the signal itself “jumps” through-
out its channel to represent data. The best way
to intuitively think of this is that the modulation
is frequency-modulating an underlying chirp. This
is analogous to the signal alternating between two
frequencies in a 2FSK system, where one frequency
represents a 0 and the other represents a 1. The
underlying signal in that case is a signal of constant
frequency, rather than a chirp, and the number of
bits per symbol is 1. How many data bits are en-
coded into each frequency jump within LoRa? This
is determined by the spreading factor.

The first step to extracting the symbols is to de-
chirp the received signal. This is done by channeliz-
ing the received signal to the chirp’s bandwidth and
multiplying the result against a locally-generated
complex conjugate of whichever chirp is being ex-
tracted.

A locally generated chirp might look like this.

Since both upchirps and downchirps are present
in the modulation, the signal should be multiplied
against both a local upchirp and downchirp, which
produces two separate IQ streams. Why this works
can be reasoned intuitively, since waves obey su-
perposition, multiplying a signal with frequency f0
against a signal with frequency −f0 results in a sig-
nal with frequency 0, or DC. If a chirp is multiplied
against a copy of itself, it will result in a signal of
2 ∗ f0, which will spread its energy throughout the
band. Thus, generating a local chirp at the nega-
tive chirp rate of whichever chirp is being processed

21See Semtech AN1200.22.

50

results in RF features with constant frequency that
can be handled nicely.

In following examples, the left image shows de-
chirped upchirps while the right shows de-chirped
downchirps:

This de-chirped signal may be treated similarly
to MFSK, where the number of possible frequen-

cies is M = 2(spreading_factor). The Fast Fourier
Transform (FFT) is the tool used to perform the
actual symbol measurement. Fourier analysis shows
that a signal can be modeled as a summed series of
basic periodic functions (i.e., a sine wave) at various
frequencies. A FFT decomposes a signal into the fre-
quency components that comprise it, returning the
power and phase of each component present. Each
component to be extracted is colloquially called a
“bin;” the number of bins is specified as the “FFT
size” or “FFT width.”

Thus, by taking an M -bin wide FFT of each IQ
stream, the symbols may be resolved by finding the
argmax, which is the bin with the most powerful
component of each FFT. This works out nicely be-
cause a de-chirped CSS symbol turns into a signal
with constant frequency; all of the symbol’s energy
should fall into a single bin.22

With the signal de-chirped, the remainder of
the demodulation process can be described in three
steps. These steps mimic the process required for
essentially all digital radio receivers.

First, we’ll identify the start of the packet by
finding a preamble. Then, we’ll synchronize with
the start of the packet, so that we may conclude in
demodulating the payload by measuring its aligned
symbols.

7.3.1 Finding the Preamble

A preamble is a feature included in modulation
schemes to announce that a packet is soon to fol-
low. By visual inspection, we can infer that LoRa’s
preamble is represented by a series of continuous
upchirps. Once de-chirped and passed through an
FFT, all of the preamble’s symbols wind up resid-
ing within the same FFT bin. Thus, a preamble is
detected if enough consecutive FFTs have the same
argmax.

7.3.2 Synchronizing with the SFD

With our receiver aware that it’s about to receive
a packet, the next step is to accurately synchronize
with it so that symbols can be resolved accurately.
To facilitate this, modern radio systems often adver-
tise the start of the packet’s data unit with a Start of

22It may be possible to do this using FM demodulation rather than FFTs, however using FFTs preserves power information
that is useful for framing the packet without knowing its definitive length.

51

Frame Delimiter, or SFD, which is a known symbol
distinct from the preamble that receivers are pro-
grammed to look for. For LoRa, this is where the
downchirps come in.

The SFD is composed of two and one quarter
downchirps, while all the other symbols are repre-
sented by upchirps. With preamble having been
found, our receiver should look for two consecutive
downchirps to synchronize against. It looks some-
thing like the following:

Accurate synchronization is crucial to properly
resolving symbols. If synchronization is off by
enough samples, when FFTs are taken each sym-
bol’s energy will be divided between two adjacent
FFTs. Until now, the FFT process used to resolve

the symbols processed 2(spreading_factor) samples
per FFT with each sample being processed exactly
once, however after a few trial runs it became evi-
dent that this coarse synchronization would not be
sufficiently accurate to guarantee good fidelity.

Increasing the time-based FFT resolution was
found to be a reliable method for achieving an ac-
curate sync. This is done by shifting the stream of
de-chirped samples through the FFT input buffer,
processing each sample multiple times, to “overlap”
adjacent FFTs. This increases the time-based res-
olution of the FFT process at the expense of be-
ing more computationally intensive. Thus, overlap-
ping FFTs are only used to frame the SFD; non-
overlapped FFTs with each sample being processed
exactly once are taken otherwise to balance accuracy
and computational requirements.

Technically there’s also a sync word that pre-
cedes the SFD, but my demodulation process de-
scribed in this article does not rely on it.

7.3.3 Demodulating the Payload

Now synchronized against the SFD, we are able
to efficiently demodulate the symbols in the pay-
load by using the original non-overlapping FFT
method. However, since our receiver’s locally gen-
erated chirps are likely out of phase with the chirp
used by the transmitter, the symbols appear offset

within the set range [0 : 2(spreading_factor)−1] by
some constant. It was surmised that the preamble
would be a reliable element to represent symbol 0,
especially given that the aforementioned sync word’s
value is always referenced from the preamble. A sim-
ple modulo operation to normalize the symbol value
relative to the preamble’s zero-valued bin produces
the true value of the symbols, and the demodulation
process is complete.

7.4 Decoding, and its Pitfalls

Overall, demodulation proved to not be too difficult,
especially when you have someone like Balint See-
ber feeding you advice and sagely wisdom. However,
decoding is where the fun (and uncertainty) really
began.

First, why encode data? In order to increase
over the air resiliency, data is encoded before it is
sent. Thus, the received symbols must be decoded
in order to extract the data they represent.

The documentation I was able to gather on LoRa
certainly suggested that figuring out the decoding
would be a snap. The patent application describ-
ing a LoRa-like modulation described four decoding
steps that were likely present. Between the patent
and some of Semtech’s reference designs, there were
documented algorithms or detailed descriptions of
every step. However, these documents slowly proved
to be lies, and my optimism proved to be misplaced.

7.4.1 OSINT Revisited

Perhaps the richest source of overall hints was
Semtech’s European patent application.23 The
patent describes a CSS-based modulation with an
uncanny resemblance to LoRa, and goes so far as
to walk step-by-step through the encoding elements
present in the PHY. From the encoder’s perspec-
tive, the patent describes an encoding pipeline of
forward error correction, a diagonal interleaver, data
whitening, and gray indexing, followed by the just-
described modulation process. The reverse process

23European Patent #13154071.8/EP20130154071

52

Figure 12. The top is pre-sync and non-overlapped, middle is pre-sync overlapped, bottom is synchronized
and non-overlapped.

53

would be performed by the decoder. The patent
even defines an interleaver algorithm, and Semtech
documentation includes several candidate whitening
algorithms.

The first thing to try, of course, was to imple-
ment a decoder exactly as described in the docu-
mentation. This involved, in order:

1. Undoing gray coding applied to the symbols.

2. Dewhitening using the algorithms defined in
Semtech’s documentation.

3. Deinterleaving using the algorithm defined in
Semtech’s patent.

4. Processing the Hamming forward error correc-
tion hinted at in Semtech’s documentation.

First, let’s review what we have learned about
each step listed above based on open-source re-
search, and what would be attempted as a result.

Gray Indexing Given the nomenclature ambigu-
ity in the Semtech patent, I also decided to test no
gray coding and reverse gray coding in addition to
forward gray coding. These were done using stan-
dard algorithms.

Data Whitening Data whitening was a colossal
question mark while looking at the system. An ideal
whitening algorithm is pseudorandom, thus an effec-
tive obfuscator for all following components of the
system. Luckily, Semtech appeared to have pub-
lished the algorithm candidates in Application Note
AN1200.18. Entitled “Implementing Data Whiten-
ing and CRC Calculation in Software on SX12xx
Devices,” it describes three different whitening algo-
rithms that were relevant to the Semtech SX12xx-
series wireless transceiver ICs, some of which sup-
port LoRa. The whitening document provided one
CCITT whitening sequences and two IBM methods
in C++. As with the gray indexing uncertainty, all
three were implemented and permuted.

Interleaver Interleaving refers to methods of de-
terministically scrambling bits within a packet. It
improves the effectiveness of Forward Error Correc-
tion, and will be elaborated on later in this text.
The Semtech patent application defined a diago-
nal interleaver as LoRa’s probable interleaver. It is
a block-style non-additive diagonal interleaver that

shuffles bits within a block of a fixed size. The in-
terleaver is defined as: Symbol(j, (i + j)%PPM) =
Codeword(i, j) where 0 <= i < PPM, 0 <= j <
4 + RDD In this case, PPM is set to the spreading
factor (or spreading_factor−2 for the PHY header
and when in low data rate modes), and RDD is set
to the number of parity bits used by the Forward
Error Correction scheme (ranging [1 : 4]).

There was only one candidate illustrated here,
so no iteration was necessary.

Forward Error Correction The Semtech patent
application suggests that Hamming FEC be used.
Other documentation appeared to confirm this. A
custom FEC decoder was implemented that orig-
inally just extracted the data bits from their stan-
dard positions within Hamming(8,4) codewords, but
early results were negative, so this was extended to
apply the parity bits to repair errors.

Using a Microchip RN2903 LoRa Mote, a transmit-
ter that was understood to be able to produce raw
frames, a known payload was sent and decoded us-
ing this process. However, the output that resulted
bore no resemblance to the expected payload. The
next step was to inspect and validate each of the
algorithms derived from documentation.

After validating each component, attempting ev-
ery permutation of supplied algorithms, and inspect-
ing the produced binary data, I concluded that
something in LoRa’s described encoding sequence
was not as advertised.

7.5 Taking Nothing for Granted

The nature of analyzing systems like this is that
beneath a certain point they become a black box.
Data goes in, some math gets done, RF happens,
said math gets undone, and data comes out. Sim-
ple enough, but when encapsulated as a totality it
becomes difficult to isolate and chase down bugs in
each component. Thus, the place to start was at the
top.

54

7.5.1 How to Bound a Problem

The Semtech patent describes the first stage of de-
coding as “gray indexing.” Gray coding is a process
that maps bits in such a way that makes it resilient
to off-by-one errors. Thus, if a symbol were to be
measured within ±1 index of the correct bin, the
gray coding would naturally correct the error. “Gray
indexing,” ambiguously referring to either gray cod-
ing or its inverse process, was initially understood
to mean forward gray coding.

The whitening sequence was next in line. Data
whitening is a process applied to transmitted data
to induce randomness into it. To whiten data, the
data is XORed against a pseudorandom string that
is known to both the transmitter and the receiver.
This does good things from an RF perspective, since
it induces lots of features and transitions for a re-
ceiver to perform clock recovery against. This is
functionally analogous to line coding schemes such
as Manchester encoding, but whitening offers one
pro and one con relative to line coding: data whiten-
ing does not impact the effective bit rate as Manch-
ester encoding does,24 but this comes at the expense
of legibility due to the pseudorandom string.

At this point, it is important to address some of
the assumptions and inferences that were made to
frame the following approach. While the four de-
coding stages were thrown into question by virtue
of the fact that at least one of the well-described
algorithms was not correct, certain implied proper-
ties could be generalized for each class of algorithm,
even if the implementation did not match exactly.

I made a number of assumptions at this point,
which I’ll describe in turn.

First, the interleaver in use is non-additive. This
means that while it will reorder the bits within each
interleaving block, it will not cause any additional
bits to be set or unset. This was a reasonable

assumption because many block-based interleavers
are non-additive, and the interleaver defined in the
patent is non-additive as well. Even if the interleaver
used a different algorithm, such as a standard block
interleaver or a different type of diagonal interleaver,
it could still fit within this model.

Second, the forward error correction in use is
Hamming FEC, with 4 data bits and 1-4 parity bits
per codeword. FEC can be thought of as super-
charged parity bits. A single parity bit can indicate
the presence of an error, but if you use enough of
them they can collectively identify and correct er-
rors in place, without re-transmission. Hamming is
specifically called out by the European patent, and
the code rate parameter referenced throughout ref-
erence designs fits nicely within this model. The use
of Hamming codes, as opposed to some other FEC
or a cyclic coding scheme, was fortuitous because
of a property of the Hamming code words. Ham-
ming codeword mapping is deterministic based on
the nybble that is being encoded. Four bits of data
provide 16 possible codewords. When looking at
Hamming(8,4) (which is the inferred FEC for LoRa
code rate 4/8), 14 of the 16 codewords contain four
set bits (1s) and four unset bits (0s). However, the
code words for 0b0000 and 0b1111 are 0b00000000

and 0b11111111, respectively.

Thus, following on these two assumptions, if a
payload containing all 0x00s or 0xFFs were sent,
then the interleaving and forward error correction
should cancel out and not affect the output at all.
This reduces our unknown stages in the decoding
chain from four to just two, with the unknowns be-
ing gray indexing and whitening, and once those are
resolved then the remaining two can be solved for!

Since “gray indexing” likely refers to gray cod-
ing, reverse gray coding, or no coding should it be
omitted, this leaves only three permutations to try
while solving for the data whitening sequence.

The first step was to take a critical look at
the data whitening algorithms provided by Semtech
AN1200.18. Given the detail and granularity in
which they are described, plus the relevance of
having come straight from a LoRa transceiver
datasheet, it was almost a given that one of the three
algorithms would be the solution. With the inter-
leaver and FEC effectively zeroed out, and “gray in-
dexing” reduced to three possible states, it became
possible to test each of the whitening algorithms.

Testing each whitening algorithm was fairly

24Manchester’s effective bit rate is 1/2 baud rate.

55

straightforward. A known payload of all 0x00s or
0xFFs (to cancel out interleaving and FEC) was
transmitted from the Microchip LoRa Technology
Mote and then decoded using each whitening al-
gorithm and each of the possible “gray indexing”
states. This resulted in 9 total permutations. A
visual diff of the decoded data versus the expected
payload resulted in no close matches. This was re-
placed with a diff script with a configurable toler-
ance for bits that did not match. This also resulted
in no matches as well. One final thought was to
forward compute the whitening algorithms in case
there was a static offset or seed warm-up, as can
be the case with other PRNG algorithms. Likewise,
this did not reveal any close matches. This meant
that either none of the given whitening algorithms
in the documentation were utilized, or the assump-
tions that I made about the interleaver and FEC
were not correct.

After writing off the provided whitening algo-
rithms as fiction, the next course of action was to
attempt to derive the real whitening algorithm from
the LoRa transmitter itself. This approach was
based on the previous observations about the FEC
and interleaver and a fundamental understanding of
how data whitening works. In essence, whitening is
as simple as XORing a payload against a static pseu-
dorandom string, with the same string used by both
the transmitter and receiver. Since anything XORed
with zero is itself, passing in a string of zeroes causes
the transmitter to reveal a “gray indexed” version of
its whitening sequence.

This payload was received, then transformed into
three different versions of itself: one gray-coded, one
unmodified, and one reverse gray-coded. All three
were then tested by transmitting a set of 0xF data
nybbles and using each of the three “gray indexing”
candidates and received whitening sequence to de-
code the payload. The gray coded and unmodified
versions proved to be incorrect, but the reverse gray
coding version successfully produced the transmit-
ted nybbles, and thus in one fell swoop, I was able
to both derive the whitening sequence and discern
that “gray indexing” actually referred to the reverse
gray coding operation. With “gray indexing” and
whitening solved, I could turn my attention to the
biggest challenge: the interleaver.

7.5.2 The Interleaver

At this point we’ve resolved two of the four signal
processing stages, disproving their documentation

in the process. Following on this, the validity of the
interleaver definition provided in Semtech’s patent
was immediately called into question.

A quick test was conducted against a local im-
plementation of said interleaver: a payload com-
prised of a repeated data byte that would produce
a Hamming(8,4) codeword with four set and four
unset bits was transmitted and the de-interleaved
frame was inspected for signs of the expected code-
word. A few other iterations were attempted, in-
cluding reversing the diagonal offset mapping pat-
tern described by the patent and using the inverse
of the algorithm (i.e., interleaving the received pay-
load rather than de-interleaving it). Indeed, I was
able to conclude that the interleaver implemented by
the protocol is not the one suggested by the patent.
The next logical step is to attempt to reverse it.

Within a transmitter, interleaving is often ap-
plied after forward error correction in order to make
the packet more resilient to burst interference. In-
terleaving scrambles the FEC-encoded bits through-
out the packet so that if interference occurs it is
more likely to damage one bit from many codewords
rather than several bits from a single codeword. The
former error scenario would be recoverable through
FEC, the latter would result in unrecoverable data
corruption.

Block-based interleavers, like the one described
in the patent, are functionally straightforward.
The interleaver itself can be thought of as a two-
dimensional array, where each row is as wide as the
number of bits in each FEC codeword and the num-
ber of columns corresponds to the number of FEC
codewords in each interleaver block. The data is
then written in row-wise and read out column-wise;
thus the first output “codeword” is comprised of the
LSB (or MSB) of each FEC codeword. A diagonal
interleaver, as suggested in the patent, offsets the
column of the bit being read out as rows are tra-
versed.

Understanding the aforementioned fundamentals
of what the interleaver was likely doing was essen-
tial to approaching this challenge. Ultimately, given
that a row-column or row-diagonal relationship de-
fines most block-based interleavers, I anticipated
that patterns that could be revealed if approached
appropriately. Payloads were therefore constructed
to reveal the relationship of each row or codeword
with a corresponding diagonal or column. In order
to reveal said mapping, the Hamming(8,4) codeword
for 0xF was leveraged, since it would fill each row

56

0x0000000F 0x000000F0 0x00000F00 0x0000F000 0x000F0000 0x00F00000 0x0F000000 0xF0000000

00100011 11000000 00001001 11010000 00000011 01000100 01000001 00001000
00010011 00100101 00000111 00001001 00000011 00000011 10000010 01000101
00001001 00010001 00000011 00000101 01000001 00000000 00100001 10000011
00000111 00001101 00000011 00000110 10000010 01000101 00010010 00100011
00000000 00001100 01000010 00001000 00100010 10001001 00001010 00010011
00000100 00000000 10000001 01000010 00010001 00100010 00000111 00001011
01000011 00000001 00100001 10000000 00001001 00010000 00000011 00000111
10000101 01000111 00010000 00100101 00000000 00001111 00000101 00000111

Figure 13. Symbol Tests

with eight contiguous bits at a time. Payloads con-
sisting of seven 0x0 codewords and one 0xF code-
word were generated, with the nybble position of
0xF iterating through the payload. See Figure 13.

As one can see, by visualizing the results as they
would be generated by the block, patterns associ-
ated with each codeword’s diagonal mapping can be
identified. The diagonals are arbitrarily offset from
the corresponding row/codeword position. One im-
portant oddity to note is that the most significant
bits of each diagonal are flipped.

While we now know how FEC codewords map
into block diagonals, we do not know where each
codeword starts and ends within the diagonals, or
how its bits are mapped. The next step is to map
the bit positions of each interleaver diagonal. This
is done by transmitting a known payload comprised
of FEC codewords with 4 set and 4 unset bits and
looking for patterns within the expected diagonal.

1 Payload : 0xDEADBEEF
b i t 76543210

3 00110011
10111110

5 11111010
11011101

7 10000010
10000111

9 11000000
10000010

Reading out the mapped diagonals results in the
following table.

T Bot

D 1 0 1 0 0 0 0 1
E 0 1 1 1 0 1 0 0
A 0 1 0 1 1 0 0 0
D 1 0 1 1 0 0 0 0
B 1 1 0 0 0 0 1 0
E 0 1 1 1 0 1 0 0
E 0 1 1 1 0 1 0 0
F 1 1 1 1 1 1 1 1

While no matches immediately leap off the page,
manipulating and shuffling through the data begins

to reveal patterns. First, reverse the bit order of the
extracted codewords:

B Top

D 1 0 0 0 0 1 0 1
E 0 0 1 0 1 1 1 0
A 0 0 0 1 1 0 1 0
D 0 0 0 0 1 1 0 1
B 0 1 0 0 0 0 1 1
E 0 0 1 0 1 1 1 0
E 0 0 1 0 1 1 1 0
F 1 1 1 1 1 1 1 1

And then have a look at the last nybble for each
of the highlighted codewords:

B Top

D 1 0 0 0 0 1 0 1
E 0 0 1 0 1 1 1 0

A 0 0 0 1 1 0 1 0

D 0 0 0 0 1 1 0 1

B 0 1 0 0 0 0 1 1
E 0 0 1 0 1 1 1 0

E 0 0 1 0 1 1 1 0

F 1 1 1 1 1 1 1 1

Six of the eight diagonals resemble the data em-
bedded into each of the expected FEC encoded code-
words! As for the first and fifth codewords, it is
possible they were damaged during transmission, or
that the derived whitening sequence used for those
positions is not exact. That is where FEC proves its
mettle – applying Hamming(8,4) FEC would repair
any single bit errors that occurred in transmission.
The Hamming parity bits that are expected with
each codeword are calculated using the Hamming
FEC algorithm, or can be looked up for standard
schemes like Hamming(7,4) or Hamming(8,4).

Data (8 , 4) Par i ty Bi t s
2 0xD 1101 1000

0xE 1110 0001
4 0xA 1010 1010

0xD 1101 1000
6 0xB 1011 0100

0xE 1110 0001
8 0xE 1110 0001

0xF 1111 1111

57

While the most standard Hamming(8,4) bit or-
der is: p1, p2, d1, p3, d2, d3, d4, p4 (where p are
parity bits and d are data bits), after recognizing the
above data values we can infer that the parity bits
are in a nonstandard order. Looking at the diago-
nal codeword table and the expected Hamming(8,4)

encodings together, we can map the actual bit posi-
tions:

Bot Top
p1 p2 p4 p3 d1 d2 d3 d4

D 1 0 0 0 0 1 0 1
E 0 0 1 0 1 1 1 0
A 0 0 0 1 1 0 1 0
D 0 0 0 0 1 1 0 1
B 0 1 0 0 0 0 1 1
E 0 0 1 0 1 1 1 0
E 0 0 1 0 1 1 1 0
F 1 1 1 1 1 1 1 1

Note that parity bits three and four are swapped.
With that resolved, we can use the parity bits to de-
code the forward error correction, resulting in four
bits being corrected, as shown in Figure 14.

That’s LoRa!
– — — – — — — — – — –

Having reversed the protocol, it is important to
look back and reflect on how and why this worked.
As it turned out, being able to make assumptions
and inferences about certain goings-on was crucial
for bounding the problem and iteratively verify-
ing components and solving for unknowns. Recall
that by effectively canceling out interleaving and
forward error correction, I was able to effectively
split the problem in two. This enabled me to solve
for whitening, even though “gray indexing” was un-
known there were only three permutations, and with
that in hand, I was able to solve for the interleaver,
since FEC was understood to some extent. Just like
algebra or any other scientific inquiry, it comes down
to controlling your variables. By stepping through
the problem methodically and making the right in-
ferences, we were able to reduce 4 independent vari-
ables to 1, solve for it, and then plug that back in
and solve for the rest.

7.6 Remaining Work

While the aforementioned process represents a com-
prehensive description of the PHY, there are a few
pieces that will be filled in over time.

The LoRa PHY contains an optional header with
its own checksum. I have not yet reversed the

header, and the Microchip LoRa module I’ve used
to generate LoRa traffic does not expose the option
of disabling the header. Thus I cannot zero those
bits out to calculate the whitening sequence applied
to it. It should be straightforward to fill in with the
correct hardware in hand.

The PHY header and service data unit/payload
CRCs have not been investigated for the same rea-
son. This should be easy to resolve through the use
of a tool like CRC RevEng once the header is known.

In my experience, for demodulation purposes
clock recovery has not been necessary beyond get-
ting an accurate initial sync on the SFD. However
should clock drift pose a problem, for example if
transmitting longer messages or using higher spread-
ing factors which have slower data rates/longer over-
the-air transmission times, clock recovery may be
desirable.

7.7 Shameless Plug

I recently published an open source GNU Radio
OOT module that implements a transceiver based
on this derived version of the LoRa PHY. It is pre-
sented to empower RF and security researchers to
investigate this nascent protocol.25

25git clone https://github.com/BastilleResearch/gr-lora

unzip pocorgtfo13.pdf gr-lora.tar.bz2

58

Top
p1 p2 p4 p3 d1 d2 d3 d4

D 1 0 0 0 1 1 0 1 1101 = 0xD
E 0 0 1 0 1 1 1 0 1110 = 0xE
A 1 0 0 1 1 0 1 0 1010 = 0xA
D 1 0 0 0 1 1 0 1 1101 = 0xD
B 0 1 0 0 1 0 1 1 1011 = 0xB
E 0 0 1 0 1 1 1 0 1110 = 0xE
E 0 0 1 0 1 1 1 0 1110 = 0xE
F 1 1 1 1 1 1 1 1 1111 = 0xF

Figure 14. Forward Error Corrected bits shown in bold

7.8 Conclusions and Key Takeaways

Presented here is the process that resulted in a com-
prehensive deconstruction of the LoRa PHY layer,
and the details one would need to implement the
protocol. Beyond that, however, is a testament to
the challenges posed by red herrings (or three of
them, all at once) encountered throughout the re-
verse engineering process. While open source in-
telligence and documentation can be a boon to re-
searchers – and make no mistake, it was enormously
helpful in debunking LoRa – one must remember
that even the most authentic sources may sometimes
lie!

Another point to take away from this is the im-
portance of bounding problems as you solve them,
including through making informed inferences in the
absence of perfect information. This of course must
be balanced with the first point about OSINT, is
knowing when to walk away from a source. How-
ever as illustrated above, drawing appropriate con-
clusions proved integral to reducing and solving for
each of the decoding elements within a black-box
methodology.

The final thought I will leave you with is that
wireless doesn’t just mean Wi-Fi anymore - it in-
cludes cellular, PANs, LPWANs, and everything in
between. Accordingly, a friendly reminder that se-
curity monitoring and test tools don’t exist until
someone creates them. Monitor mode and Wire-
shark weren’t always a thing, so don’t take them
for granted: it’s time to make the next generation
of wireless networks visible to researchers, because
know it or not it is already here and is here to stay.

59

8 Plumbing, not Popper;

or, the Problem with STEP

by Pastor Manul Laphroaig

Gather round, neighbors. We are going to a mag-
ical place. One that we hardly ever notice in our
busy lives, but which has a way of taking over your
entire day when you are forced to visit it. We are
going on a trip to the plumbing closet!26

Look at the miracle that is the clump of pipes,
looking right back at you. Its message is clear: do

not approach without skill, unless you like wet, gi-
gantic messes. This message is universal: it speaks
to a politician, a professor, an NYT columnist, a
movie actor, and a hedge fund manager alike. It
transcends languages and beliefs.

Even though these worthies and civic leaders
might agree the country could use more plumbers,
it has not yet occurred to them to approach the
problem by putting a big P into some popular slo-
gan like “STEP” (Science, Technology, Engineering,
Plumbing), by setting up a federal Department of
Plumbing, or by lionizing a professional coveralls-
wearer TV personality who goes by “A Plumbing
Guy,” despite never having fixed a pipe in his life.

They somehow know that these things will do
diddly squat to address the shortage of plumbers.
They know deep down that to learn plumbing—and
even to not sound ridiculous about it—one needs to

study with a plumber, attach oneself to a plumber,
and do what a plumber does for a while. This, neigh-
bors, is how deep the plumbing magic goes.

Science, alas, has not been so lucky.
– — — – — — — — – — –

It is fashionable to talk about how we need more
scientists, and how we can direct and improve sci-
ence, quoting grand theories that explain science,
while similarly educated people nod approvingly.
After all, they all know what science is, as befits
all forward-thinking people these days. No one feels
awkward; everyone feels good.

Perhaps this happens because our social betters
all experienced helplessness at the sight of broken
plumbing, but would not recognize broken science,
much less a hopelessly broken science textbook. You
see, science lab equipment is OK with a patroniz-
ing, self-satisfied gaze, whereas plumbing has a way
of glaring back contemptuously, daring you to use
your general theoretical understanding.

With plumbing, it’s either practical skill or
a huge mess in your basement. Messing with
how plumbers learn and teach this skill guarantees
messes in thousands of basements. If you value your
plumbing, it’s wise to leave plumbers alone even if
you believe every word of every newspaper column
you’ve ever read on plumbing economy.

It may be a surprise to the readers of Karl Pop-
per and Imre Lakatos27 that actual scientists are
helped by philosophy of science in exactly the same
way as plumbers are helped by the Zen of Plumb-
ing. Although these very same people are likely to
believe they understand plumbing too, they usually
have the sense to leave the plumbing profession well
alone, and not apply their philosophical understand-
ings to it—being empirically familiar with the fact
that when you need plumbing done, philosophy is
useless; only the skill stands between the water in
your pipes and your expensive library.

– — — – — — — — – — –

26For those of you fortunate to own a house, it’s probably in the corner of your basement, an equally magical place, whence
all science and innovation springs forth—but let us not digress.

27Lakatos the philosopher is considered to be a great intellectual authority. For what it’s worth, you might also want to read
about how he applied his philosophy in real life: unzip pocorgtfo13 freudenthal.pdf

60

61

By far the worst hit to a profession is delivered
when a part of the professionals actually welcomes
philosophers lauding it, politicians bearing gifts and
grants, and governments setting up departments to
promote it. Forms to fill, ever-growing grant appli-
cation paperwork, pervasive “performance metrics,”
and having to explain basic fallacies to the well-
meaning but fundamentally ignorant and hugely
powerful committees come later—and accumulate.
In the context of metrics, charlatans always win, be-
cause they don’t get distracted by trying for actual
results.

Not to mention that the money that goes to char-
latans is not net-neutral for actual plumbing (or sci-
ence); it is net-negative, because charlatans have a
way of making the lives of professionals hard where
it hurts the most. When Tim “the Tool Man” Tay-
lor waves power tools around with a swagger, the

results are immediate and obvious. When learned
committees do the professional equivalent thereof to
math textbooks and call it nice names like “Discov-
ery Math,” “Common Core,” or “Critical Thinking”
it takes a generation to notice, and then we wonder—
how on earth did school math become unteachable
and unlearnable?28

Plumbers have wisely avoided it, perhaps due to
some secret wisdom passed from master to appren-
tice through the ages. Scientists, I am sorry to say,
walked right into it around the middle of the twen-
tieth century.

Sure enough, national agencies got us to the
moon—but it seems that all the good science school-
books have been put on the rockets going there,
never to return. Have you met many scientists who
are happy with what schools do to their sciences
after half a century of being improved by various
government offices?

Funny how it worked out for scientists. Now hear
them complain about “publish or perish,” the rapidly
rising age at which one finally succeeds in getting
one’s first grant, and the relentless race to rebrand
and follow the current big-ticket grant programs.29

But don’t blame them, neighbors; it was their
advisors or their advisors’ advisors who fell for it.
Better to buy them a drink, and remember their
lesson.

Better yet, find some plumbers, and buy them
drinks. Perhaps they’ll share with you some of their
secrets of how to keep the philosophers and their
educated and benevolent readers interested in the
result, but at a safe distance from the actual plumb-
ing.

28We sort of know the answer, neighbors: a roller coaster of reforms and unintelligible standards created a generation of math
teachers for whom math did not have to make sense. unzip pocorgtfo13.pdf wu-preparing-teachers.pdf and read it. It may
apply to whatever else you hold dear.

29According to Ronald J. Daniels, President of Baltimore’s Johns Hopkins University, no less than the whole generation
is at risk: “A generation at risk: Young investigators and the future of the biomedical workforce.” (unzip pocorgtfo13.pdf

atrisk.pdf.) For more of this, read “Science in the Age of Selfies” by Donald Geman, Stuart Geman. (selfies.pdf.) It’s hard
to make these things up, neighbors.

62

9 Where is ShimDBC.exe?

by Geoff Chappell

Microsoft’s Shim Database Compiler might be a
legend . . . except that nobody seems ever to have
made any story of it. It might be mythical . . . ex-
cept that it actually does exist. Indeed, it has been
around for 15 years in more or less plain sight. Yet
if you ask Google to search the Internet for occur-
rences of shimdbc, and especially of “shimdbc.exe”
in quotes, you get either remarkably little or a tan-
talising hint, depending on your perspective.

Mostly, you get those scam sites that have pre-
pared a page for seemingly every executable that
has ever existed and can fix it for you if only you
will please download their repair tool. But amongst
this dross is a page from Microsoft’s TechNet site.
Google excerpts that “QFixApp uses the support
utility ShimDBC.exe to test the group of selected
fixes.” Follow the link and you get to one of those
relatively extensive pages that Microsoft sometimes
writes to sketch a new feature for system adminis-
trators and advanced users (if not also to pat them-
selves on the back for the great new work). This
page is from 2001 and is titled Windows XP Appli-

cation Compatibility Technologies.30

9.1 Application Compatibility?

There can’t be anything more boring in the whole
of Windows, you may think. I certainly used to,
and might still for applications if I cared enough,
but Windows 8 brought Application Compatibility

to kernel mode in a whole new way, and this I do

care about.

The integrity of any kernel-mode driver that you
or I write nowadays depends on what anyone else,
well-meaning or not, can get into the DRVMAIN.SDB

file in the AppPatch subdirectory of the Windows
installation. This particular Shim Database file ex-
ists in earlier Windows versions too, but only to list
drivers that the kernel is not to load. If you’re the
writer of a driver, there’s nothing you can do at run-
time about your driver being blocked from loading,
and in some sense you’re not even affected: you’re
not loaded and that’s that. Starting with Win-
dows 8, however, the DRVMAIN.SDB file defines the
installed shim providers and either the registry or
the file can associate your driver with one or more of
these defined shim providers. When your driver gets
loaded, the applicable shim providers get loaded too,
if they are not already, and before long your driver’s
image in memory has been patched, both for how it
calls out through its Import Address Table and how
it gets called, e.g., to handle I/O requests.

In this brave new world, is your driver really
your driver? You might hope that Microsoft would
at least give you the tools to find out, if only so
that you can establish that a reported problem with
your driver really is with your driver. After all,
for the analogous shimming, patching, and what-
ever of applications, Microsoft has long provided an
Application Compatibility Toolkit (ACT), recently
re-branded as the Windows Assessment and Deploy-
ment Kit (ADK). The plausible thoroughness of this
kit’s Compatibility Administrator in presenting a
tree view of the details is much of the reason that
I, for one, regarded the topic as offering, at best,
slim pickings for research. For the driver database,
however, this kit does nothing—well, except to leave
me thinking that the SDB file format and the API
support through which SDB files get interpreted,
created, and might be edited, are now questions I
should want to answer for myself rather than imag-

30https://technet.microsoft.com/library/bb457032.aspx

63

ine they’ve already been answered well by whoever
managed somehow to care about Application Com-
patibility all along.

9.2 The SDB File Format

Relax! I’m not taking you to the depths of Applica-
tion Compatibility, not even just for what’s specific
to driver shims. Our topic here is reverse engineer-
ing. Now that you know what these SDB files are
and why we might care to know what’s in them,
I expect that if you have no interest at all in Ap-
plication Compatibility, you can treat this part of
this article as using SDB files just as an example
for some general concerns about how we present
reverse-engineered file formats. (And please don’t
skip ahead, but I promise that the final part is pretty
much nothing but ugly hackery.)

Let’s work even more specifically with just one
example of an SDB file, shown in Figure 15. It’s a
little long, despite being nearly minimal. It defines
one driver shim but no drivers to which this shim is
to be applied.

Although Microsoft has not documented the
SDB file format, Microsoft has documented a se-
lection of API functions that work with SDB files,
which is in some ways preferable. Perhaps by look-
ing at these functions researchers and reverse engi-
neers have come to know at least something of the
file format, as evidenced by various tools they have
published which interpret SDB files one way or an-
other, typically as XML.

As a rough summary, an SDB file has a 3-dword
header, for a major version, minor version, and sig-
nature, and the rest of the file is a list of variable-size
tags which each have three parts:

1. a 16-bit TAG, whose numerical value tells of the
tag’s type and purpose;

2. a size in bytes, which can be given explicitly as
a dword or may be implied by the high 4 bits
of the TAG;

3. and then that many bytes of data, whose in-
terpretation depends on the TAG.

Importantly for the power of the file format, the
data for some tags (the ones whose high 4 bits are
7) is itself a list of tags. From this summary and a
few details about the recognised TAG values, the im-
plied sizes and the general interpretation of the data,

e.g., as word, dword, binary, or Unicode string—
all of which can be gleaned from Microsoft’s admit-
tedly terse documentation of those API functions—
you might think to reorganise the raw dump so that
it retains every byte but more conveniently shows
the hierarchy of tags, each with their TAG, size (if
explicit) and data (if present). A decoding of Fig-
ure 15 is shown in Figure 16.

To manually verify that everything in the file is
exactly as it should be, there is perhaps no better
representation to work from than one that retains
every byte. In practice, though, you’ll want some
interpretation. Indeed, the dump above does this
already for the tags whose high 4 bits are 6. The
data for any such tag is a string reference, specifi-
cally the offset of a 0x8801 tag within the 0x7801

tag (at offset 0x0142 in this example), and an auto-
mated dump can save you a little trouble by show-
ing the offset’s conversion to the string. Since those
numbers for tags soon become tedious, you may pre-
fer to name them. The names that Microsoft uses
in its programming are documented for the roughly
100 tags that were defined ten years ago (for Win-
dows Vista). All tags, documented or not (and now
running to 260), have friendly names that can be ob-
tained from the API function SdbTagToString. If
you haven’t suspected all along that Microsoft pre-
pares SDB files from XML input, then you’ll likely
take “tag” as a hint to represent an SDB file’s tags
as XML tags. And this, give or take, is where some
of the dumping tools you can find on the Internet
leave things, such as in Figure 17.

Notice already that choices are made about what
to show and how. If you don’t show the offset in
bytes that each XML tag has as an SDB tag in the
original SDB file, then you risk complicating your
presentation of data, as with the string references,
whose interpretation depends on those file offsets.
But show the offsets and your XML quickly looks
messy. Once your editorial choices go so far that you
don’t reproduce every byte but instead build more
and more interpretation into the XML, why show
every tag? Notably, the string table that’s the data
for tag 0x7801 (TAG_STRINGTABLE) and the indexes
that are the data for tag 0x7802 (TAG_INDEXES)
must be generated automatically from the data for
tag 0x7001 (TAG_DATABASE) such that the last may
be all you want to bother with. Observe that for any
tag that has children, the subtags that don’t have
children come first, and perhaps you’ll plumb for a
different style of XML in which each tag that has no

64

00000000: 02 00 00 00 01 00 00 00-73 64 62 66 02 78 CA 00sdbf.x..

00000010: 00 00 03 78 14 00 00 00-02 38 07 70 03 38 01 60 ...x.....8.p.8.‘

00000020: 16 40 01 00 00 00 01 98-00 00 00 00 03 78 0E 00 .@...........x..

00000030: 00 00 02 38 17 70 03 38-01 60 01 98 00 00 00 00 ...8.p.8.‘......

00000040: 03 78 0E 00 00 00 02 38-07 70 03 38 04 90 01 98 .x.....8.p.8....

00000050: 00 00 00 00 03 78 14 00-00 00 02 38 1C 70 03 38x.....8.p.8

00000060: 01 60 16 40 02 00 00 00-01 98 00 00 00 00 03 78 .‘.@...........x

00000070: 14 00 00 00 02 38 1C 70-03 38 0B 60 16 40 02 008.p.8.‘.@..

00000080: 00 00 01 98 00 00 00 00-03 78 14 00 00 00 02 38x.....8

00000090: 1A 70 03 38 01 60 16 40-02 00 00 00 01 98 00 00 .p.8.‘.@........

000000A0: 00 00 03 78 14 00 00 00-02 38 1A 70 03 38 0B 60 ...x.....8.p.8.‘

000000B0: 16 40 02 00 00 00 01 98-00 00 00 00 03 78 1A 00 .@...........x..

000000C0: 00 00 02 38 25 70 03 38-01 60 01 98 0C 00 00 00 ...8%p.8.‘......

000000D0: 00 00 52 45 4B 43 41 48-14 01 00 00 01 70 60 00 ..REKCAH.....p‘.

000000E0: 00 00 01 50 D8 C1 31 3C-70 10 D2 01 22 60 06 00 ...P..1<p..."‘..

000000F0: 00 00 01 60 1C 00 00 00-23 40 01 00 00 00 07 90 ...‘....#@......

00000100: 10 00 00 00 28 22 AB F9-12 33 73 4A B6 F9 93 6D("...3sJ...m

00000110: 70 E1 12 EF 25 70 28 00-00 00 01 60 50 00 00 00 p...%p(....‘P...

00000120: 10 90 10 00 00 00 C8 E4-9C 91 69 D0 21 45 A5 45i.!E.E

00000130: 01 32 B0 63 94 ED 17 40-03 00 00 00 03 60 64 00 .2.c...@.....‘d.

00000140: 00 00 01 78 7A 00 00 00-01 88 10 00 00 00 32 00 ...xz.........2.

00000150: 2E 00 31 00 2E 00 30 00-2E 00 33 00 00 00 01 88 ..1...0...3.....

00000160: 2E 00 00 00 48 00 61 00-63 00 6B 00 65 00 64 00H.a.c.k.e.d.

00000170: 20 00 44 00 72 00 69 00-76 00 65 00 72 00 20 00 .D.r.i.v.e.r. .

00000180: 44 00 61 00 74 00 61 00-62 00 61 00 73 00 65 00 D.a.t.a.b.a.s.e.

00000190: 00 00 01 88 0E 00 00 00-48 00 61 00 63 00 6B 00H.a.c.k.

000001A0: 65 00 72 00 00 00 01 88-16 00 00 00 68 00 61 00 e.r.........h.a.

000001B0: 63 00 6B 00 65 00 72 00-2E 00 73 00 79 00 73 00 c.k.e.r...s.y.s.

000001C0: 00 00 ..

Figure 15. ShimDB File

child tags is represented as an attribute and value,
e.g.,

<DATABASE
2 TIME="0x01D210703C31C1D8"

COMPILER_VERSION=" 2 . 1 . 0 . 3 "
4 NAME="Hacked Driver Database"

OS_PLATFORM="0x00000001"
6 DATABASE_ID="0x28 0x22 0xAB 0xF9 0x12 0x33

0x73 0x4A 0xB6 0xF9 0x93 0x6D 0x70 0xE1 0
x12 0xEF">
<KSHIM

8 NAME="Hacker"
FIX_ID="0xC8 0xE4 0x9C 0x91 0x69 0xD0 0

x21 0x45 0xA5 0x45 0x01 0x32 0xB0 0x63 0
x94 0xED"

10 FLAGS="0x00000003"
MODULE="hacker . sys " />

12 </DATABASE>

Whether you choose XML in this style or to have
every tag’s data between opening and closing tags,
there are any number of ways to represent the data
for each tag. For instance, once you know that
the binary data for tag 0x9007 (TAG_DATABASE_ID)
or tag 0x9010 (TAG_FIX_ID) is always a GUID, you
might more conveniently represent it in the usual
string form. Instead of showing the data for tag
0x5001 (TAG_TIME) as a raw qword, why not show

that you know it’s a Windows FILETIME and present
it as 16/09/2016 23:15:37.944? Or, on the grounds
that it too must be generated automatically, you
might decide not to show it at all!

If I labour the presentation, it’s to make the
point that what’s produced by any number of dump-
ing tools inevitably varies according to purpose and
taste. Let’s say a hundred researchers want a tool
for the easy reading of SDB files. Yes, that’s doubt-
ful, but 100 is a good round number. Then ninety
will try to crib code from someone else—because,
you know, who wants to reinvent the wheel—and
what you get from the others will each be different,
possibly very different, not just for its output but
especially for what the source code shows of the file
format. Worse, because nine out of ten program-
mers don’t bother much with commenting, even for
a tool they may intend as showing off their cod-
ing skills, you may have to pick through the source
code to extract the file format. That may be easier
than reverse-engineering Microsoft’s binaries that
work with the file, but not necessarily by much—and
not necessarily leaving you with the same confidence
that what you’ve learnt about the file format is cor-

65

00000000: Header: MajorVersion=0x00000002 MinorVersion=0x00000001 Magic=0x66626473

0000000C: Tag=0x7802 Size=0x000000CA Data=

00000012: Tag=0x7803 Size=0x00000014 Data=

00000018: Tag=0x3802 Data=0x7007

0000001C: Tag=0x3803 Data=0x6001

00000020: Tag=0x4016 Data=0x00000001

00000026: Tag=0x9801 Size=0x00000000

0000002C: Tag=0x7803 Size=0x0000000E Data=

00000032: Tag=0x3802 Data=0x7017

00000036: Tag=0x3803 Data=0x6001

0000003A: Tag=0x9801 Size=0x00000000

00000040: Tag=0x7803 Size=0x0000000E Data=

...

000000BC: Tag=0x7803 Size=0x0000001A Data=

000000C2: Tag=0x3802 Data=0x7025

000000C6: Tag=0x3803 Data=0x6001

000000CA: Tag=0x9801 Size=0x0000000C Data=0x00 0x00 0x52 0x45 0x4B 0x43 0x41 0x48 0x14 0x01 0x00 0x00

000000DC: Tag=0x7001 Size=0x00000060

000000E2: Tag=0x5001 Data=0x01D210703C31C1D8

000000EC: Tag=0x6022 Data=0x00000006 => L"2.1.0.3"

000000F2: Tag=0x6001 Data=0x0000001C => L"Hacked Driver Database"

000000F8: Tag=0x4023 Data=0x00000001

000000FE: Tag=0x9007 Size=0x00000010 Data=0x28 0x22 0xAB 0xF9 0x12 0x33 0x73 0x4A 0xB6 0xF9 0x93 0x6D

0x70 0xE1 0x12 0xEF

00000114: Tag=0x7025 Size=0x00000028

0000011A: Tag=0x6001 Data=0x00000050 => L"Hacker"

00000120: Tag=0x9010 Size=0x00000010 Data=0xC8 0xE4 0x9C 0x91 0x69 0xD0 0x21 0x45 0xA5 0x45 0x01 0x32

0xB0 0x63 0x94 0xED

00000136: Tag=0x4017 Data=0x00000003

0000013A: Tag=0x6003 Data=0x00000064 => L"hacker.sys"

00000142: Tag=0x7801 Size=0x0000007A Data=

00000148: Tag=0x8801 Size=0x00000010 Data=L"2.1.0.3"

0000015E: Tag=0x8801 Size=0x0000002E Data=L"Hacked Driver Database"

00000192: Tag=0x8801 Size=0x0000000E Data=L"Hacker"

000001A6: Tag=0x8801 Size=0x00000016 Data=L"hacker.sys"

Figure 16. ShimDB File (Decoded from Figure 15)

66

1 <INDEXES>
<INDEX>

3 <INDEX_TAG>0x7007</INDEX_TAG>
<INDEX_KEY>0x6001</INDEX_KEY>

5 <INDEX_FLAGS>0x00000001</INDEX_FLAGS>
<INDEX_BITS></INDEX_BITS>

7 </INDEX>
<INDEX>

9 <INDEX_TAG>0x7017</INDEX_TAG>
<INDEX_KEY>0x6001</INDEX_KEY>

11 <INDEX_BITS></INDEX_BITS>
</INDEX>

13 . . .

<INDEX>
15 <INDEX_TAG>0x7025</INDEX_TAG>

<INDEX_KEY>0x6001</INDEX_KEY>
17 <INDEX_BITS>0x00 0x00 0x52 0x45 0x4B 0x43 0x41 0x48 0x14 0x01 0x00 0x00</INDEX_BITS>

</INDEX>
19 </INDEXES>

<DATABASE>
21 <TIME>0x01D210703C31C1D8</TIME>

<COMPILER_VERSION>0x00000006</COMPILER_VERSION>
23 <NAME>0x0000001C</NAME>

<OS_PLATFORM>0x00000001</OS_PLATFORM>
25 <DATABASE_ID>0x28 0x22 0xAB 0xF9 0x12 0x33 0x73 0x4A 0xB6 0xF9 0x93 0x6D 0x70 0xE1 0x12 0xEF</

DATABASE_ID>
<KSHIM>

27 <NAME>0x00000050</NAME>
<FIX_ID>0xC8 0xE4 0x9C 0x91 0x69 0xD0 0x21 0x45 0xA5 0x45 0x01 0x32 0xB0 0x63 0x94 0xED</
FIX_ID>

29 <FLAGS>0x00000003</FLAGS>
<MODULE>0x00000064</MODULE>

31 </KSHIM>
</DATABASE>

33 <STRINGTABLE>
<STRINGTABLE_ITEM>2 . 1 . 0 . 3</STRINGTABLE_ITEM>

35 <STRINGTABLE_ITEM>Hacked Driver Database</STRINGTABLE_ITEM>
<STRINGTABLE_ITEM>Hacker</STRINGTABLE_ITEM>

37 <STRINGTABLE_ITEM>hacker . sys</STRINGTABLE_ITEM>
</STRINGTABLE>

Figure 17. Illegible XML From a ShimDB Dumping Tool

67

rect and comprehensive. Writing a tool that dumps
an undocumented file format may be more reward-
ing for you as a programmer but it is not nearly the
same as documenting the file format.

9.3 Reversing XML to SDB

But is there really no definitive XML for repre-
senting SDB files? Of all the purposes that moti-
vate anyone to work with SDB files closely enough
to need to know the file format, one has special
standing: Microsoft’s creation of SDB files from
XML input. If we had Microsoft’s tool for that,
then wouldn’t most researchers plumb for revers-
ing its work to recover the XML source? After
all, most reverse engineers and certainly the popular
reverse-engineering tools don’t take binary code and
unassemble it just to what you see in the debugger.
No, they disassemble it into assembly language that
can be edited and re-assembled. Many go further
and try to decompile it into C or C++ that can be
edited and re-compiled (even if it doesn’t look re-
motely like anything you’d be pleased to have from
a human programmer). In this context, the SDB to
XML conversion to want is something you could feed
to Microsoft’s Shim Database Compiler for compila-
tion back to SDB. Anything else is pseudo-code. It
may be fine in its way for understanding the content,
and some may prefer it to a raw dump interpreted
with reference to documentation of the file format,
but however widely it gets accepted it is nonetheless
pseudo-code.

The existence of something that someone at
Microsoft refers to as a Shim Database Com-
piler has been known for at least a decade be-
cause Microsoft’s documentation of tag 0x6022

(TAG_COMPILER_VERSION), apparently contempora-
neous with Windows Vista, describes this tag’s data
as the “Shim Database Compiler version.” And
what, then, is the ShimDBC.exe from the even older
TechNet article if it’s not this Shim Database Com-
piler?

But has anyone outside Microsoft ever seen this
compiler? Dig out an installation disc for Win-
dows XP from 2001, look in the Support Tools di-
rectory, install the ACT version 2.0 from its self-
extracting executable, and perhaps install the Sup-
port Tools too in case that’s what the TechNet ar-
ticle means by “support utility.” For your troubles,
which may include having to install Windows XP,
you’ll get the article’s QFixApp.exe, and the Com-
patibility Administrator, as CompatAdmin.exe, and

some other possibly useful or at least instructive
tools such as GrabMI.exe, but you don’t get any
file named ShimDBC.exe. I suspect that Shim-

DBC.exe never has existed in public as any sort of
self-standing utility or even as its own file. Even if
it did once upon a time, we should want a modern
version that knows the modern tags such as 0x7025
(TAG_KSHIM) for defining driver shims.

For some good news, look into either QFix-

App.exe or CompatAdmin.exe using whatever is
your tool of choice for inspecting executables. In-
side each, not as resources but intermingled with the
code and data, are several instances of ShimDBC as
text. We’ve had Microsoft’s Shim Database Com-
piler for 15 years since the release of Windows XP.
All along, the code and data for the console program
ShimDBC.exe, from its wmain function inwards, has
been linked into the GUI programs QFixApp.exe

and CompatAdmin.exe (of which only the latter sur-
vives to modern versions of the ACT). Each of the
GUI programs has a WinMain function that’s first to
execute after the C Run-Time (CRT) initialisation.
Whenever either of the GUI programs wants to cre-
ate an SDB file, it composes the Unicode text of a
command line for the fake ShimDBC.exe and calls a
routine that first parses this into the argc and argv

that are expected for a wmain function and which
then simply calls the wmain function. Where the
TechNet article says QFixApp uses ShimDBC.exe,
it is correct, but it doesn’t mean that QFixApp ex-
ecutes ShimDBC.exe as a separate program, more
that QFixApp simulates such execution from the
ShimDBC code and data that’s built in.

Unfortunately, CompatAdmin does not provide,
even in secret, for passing a command line of our
choice through WinMain to wmain. But, c’mon, we’re
hackers. You’ll already be ahead of me: we can
patch the file. Make a copy of CompatAdmin.exe as
ShimDBC.exe, and use your favourite debugger or
disassembler to find three things:

• the program’s WinMain function;

• the routine the program passes the fake com-
mand line to for parsing and for calling wmain;

• the address of the Import Address Table entry
for calling the GetCommandLineW function.

68

Ideally, you might then assemble something like

c a l l dword ptr [__imp__GetCommandLineW@0]
2 mov ecx , eax

c a l l SimulateShimDBCExecution
4 r e t 10h

over the very start of WinMain. In practice, you
have to allow for relocations. Our indirect call to
GetCommandLineW will need a fixup if the program
doesn’t get loaded at its preferred address. Worse,
if we overwrite any fixup sites in WinMain, then our
code will get corrupted if fixups get applied. But
these are small chores that are bread and butter for
practised reverse engineers. For concreteness, I give
the patch details for the 32-bit CompatAdmin.exe

from the ACT version 6.1 for Windows 8.1 in Ta-
ble 2.

For hardly any trouble, we get an executable
that still contains all its GUI material (except for
the 17 bytes we’ve changed) but never executes
it and instead runs the console-application code
with the command line that we give when running
the patched program. Microsoft surely has Shim-

DBC.exe as a self-standing console application, but
what we get from patching CompatAdmin.exe must
be close to the next best thing, certainly for so little
effort. It’s still a GUI program, however, so to see
what it writes to standard output we must explicitly
give it a standard output. At a Command Prompt
with administrative privilege, enter

shimdbc -? >help.txt

to get the built-in ShimDBC program’s mostly accu-
rate description of its command-line syntax, includ-
ing most of the recognised command-line options.

To produce the SDB file that is this article’s ex-
ample, write the following as a Unicode text file
named test.xml:

<?xml version=" 1 .0 " encoding="UTF−16" ?>
2 <DATABASE NAME="Hacked Driver Database"

ID="{F9AB2228−3312−4A73−B6F9−936D70E112EF}">
4 <LIBRARY>

<KSHIM NAME="Hacker" FILE="hacker . sys "
6 ID="{919CE4C8−D069−4521−A545−0132B06394ED}

"
LOGO="YES" ONDEMAND="YES" />

8 </LIBRARY>
</DATABASE>

and feed it to the compiler via the command line

1 shimdbc Driver t e s t . xml t e s t . sdb >t e s t . txt

I may be alone in this, but if you’re going to
tell me that I should know that you know the SDB
file format when all you have to show is a tool that
converts SDB to XML, then this would better be
the XML that your tool produces from this article’s
example of an SDB file. Otherwise, as far as I’m
concerned for studying any SDB file, I’m better off
with a raw dump in combination with actual docu-
mentation of the file format.

Do not let it go unnoticed, though, that the
XML that works for Microsoft’s ShimDBC needs at-
tributes that differ from the programmatic names
that Microsoft has documented for the tags or the
friendly names that can be obtained from the Sdb-

TagToString function. For instance, the 0x6003 tag
(TAG_MODULE) is compiled from an attribute named
not MODULE but FILE. The 0x4017 tag (TAG_FLAGS)
is synthesised from two attributes. Even harder to
have guessed is that a LIBRARY tag is needed in the
XML but does not show at all in the SDB file, i.e.,
as a tag 0x7002 (TAG_LIBRARY). So, to know what
XML is acceptable to Microsoft’s compiler for creat-
ing an SDB file, you’ll have to reverse-engineer the
compiler or do a lot of inspired guesswork.

Happy hunting!

69

File Offset Original Patched Remarks

0x0002FB54 8B FF EB 08 jump to instruction that will use existing fixup site
0x0002FB56 55

0x0002FB57 8B EC

0x0002FB59 81 EC 88 05 00 00

0x0002FB5E FF 15 D0 30 49 00 incorporate existing fixup site at file offset 0x0002FB60
0x0002FB5F A1 00 60 48 00

0x0002FB64 33 C5 8B C8

0x0002FB66 89 45 FC E8 55 87 01 00 no fixup required for this direct call within .text section
0x0002FB69 8B 45 08

0x0002FB6B C2 10 00

0x0002FB6C 53

0x0002FB6D 56

Table 2. Patch details for the 32-bit CompatAdmin.exe from the ACT version 6.1 for Windows 8.1.

ba
se

d
on

 h
tt
ps

:/
/d

iv
is
by

ze
ro

.c
om

/2
01

6/
07

/0
6/

m
ak

e-
a-

su
gi
ha

ra
-c
ir
cl
es

qu
ar

e-
op

ti
ca

l-i
llu

si
on

-o
ut

-o
f-p

ap
er

/

Ambiguous Cylinder by Kokichi Sugihara

result

杉原 厚吉 の 多義柱体

70

10 Post Scriptum: A Schizophrenic Ghost

by Evan Sultanik and Philippe Teuwen

A while back, we asked ourselves,

What if PoC‖GTFO had completely dif-
ferent content depending on whether the
file was rendered by a PDF viewer versus
being sent to a printer?

A PostScript/PDF polyglot seemed inevitable. We
had already done MBR, ISO, TrueCrypt, HTML,
Ruby, . . . Surely PostScript would be simple, right?
As it turns out, it’s actually quite tricky.

$ gv pocorgtfo13.pdf

There were two new challenges in getting this
polyglot to work:

1. The PDF format is a subset of the PostScript
language, meaning that we needed to devise
a way to get a PDF interpreter to ignore the
PostScript code, and vice versa; and

2. It’s almost impossible to find a PostScript
interpreter that doesn’t also support PDF.
Ghostscript is nearly ubiquitous in its use as a
backend library for desktop PostScript view-
ers (e.g., Ghostview), and it has PDF sup-
port, too. Furthermore, it doesn’t have any
configuration parameters to force it to use a
specific format, so we needed a way to force

Ghostscript to always interpret the polyglot
as if it were PostScript.

To overcome the first challenge, we used a sim-
ilar technique to the Ruby polyglot from pocor-

gtfo11.pdf, in which the PDF header is embed-
ded into a multi-line string (delimited by parenthesis
in PostScript), so that it doesn’t get interpreted as
PostScript commands. We halt the PostScript inter-
preter at the end of the PostScript content by using
the handy stop command following the standard
%%EOF “Document Structuring Conventions” (DSC)
directive.

This works, in that it produces a file that is
both a completely valid PDF as well as a completely
valid PostScript program. The trouble is that Adobe
seems to have blacklisted any PDF that starts with
an opening parenthesis. We resolved this by wrap-
ping the multi-line string containing the PDF header
into a PostScript function we called /pdfheader:

/pdfheader

{

(

%!PS-Adobe

%PDF-1.5

%<D0><D4><C5><D8>

9999 0 obj

<<
/Length # bytes between “stream”

and “endstream”

>>
stream

)

}

PostScript Content
stop

endstream

endobj

Remainder of PDF Content

Multi-Line PostScript String

PostScript Function

PDF Object

Terminates

PostScript

Interpretation

The trick of starting the file with a PostScript
function worked, and the PDF could be viewed
in Adobe. That still leaves the second challenge,
though: We needed a way to trick Ghostscript into
being “schizophrenic” (cf. PoC‖GTFO 7:6), vi&., to
insert a parser-specific inconsistency into the poly-
glot that would force Ghostscript into thinking it is
PostScript.

Ghostscript’s logic for auto-detecting file types
seems to be in the dsc_scan_type function in-
side /psi/dscparse.c. It is quite complex, since
this single function must differentiate between seven
different filetypes, including DSC/PostScript and
PDF. It classifies a file as a PDF if it contains a
line starting with “%PDF-”, and PostScript if it con-
tains a line starting with “%!PS-Adobe”. Therefore,

if we put %!PS-Adobe anywhere before %PDF-1.5,
then Ghostscript should be tricked into thinking it is
PostScript! The only caveat is that Adobe blacklists
any PDF that starts with “%!PS-Adobe”, so it can’t
be at the beginning of the file (which is typically
where it occurs in DSC files). But that’s okay, be-
cause Ghostscript only needs it to occur before the
%PDF-1.5, regardless of where.

This article continues in the PostScript!

71

11 Tithe us your Alms of 0day!

from the desk of Pastor Manul Laphroaig,

International Church of the Weird Machines

Dearest neighbor,
Do you remember what it was like when you first

learned to program a computer? Not when you first
realized that you could do it well, but when you first
realized that you could do it at all? How did it feel?

And do you remember what it was like when you
first learned how to use calculus? Not when you
first learned how complicated differential equations
could become, but when you first realized that with
a handful of rules, you could bounce back and forth
between position, velocity, acceleration, and jerk as
if they were all the same thing? How did that feel?

And do you remember what it was like when
you first learned how to use a screwdriver? Not
when you first learned what to do after removing
the screw, but when you first realized that with a
screwdriver—with the right screwdriver—you could
take apart anything? How did that feel?

When I was sixteen, I was a bit of an asshole,
and I asked my automechanics teacher a question
about a distributor’s angular momentum. I don’t
recall my exact question, but I do recall that it was
the sort of thing no one could be expected to know,
and that, being a jerk, I asked it in the vocabulary
of calculus.

Coach Crigger could’ve called me out for be-
ing rude, or he could’ve dodged the question. He
could’ve done any number of things that you might
expect. Instead, he walked out of the classroom
while two and half dozen hooligans started a racket
audible from the other side of the campus.

Ten minutes later, he returned to the classroom.
He walked right up to my desk and slammed a
’72 Ford’s distributor onto my desk along with the
screwdriver to open it. It felt good!

Do this: write an email telling our editors how
to reproduce ONE clever, technical trick from your
research. If you are uncertain of your English, we’ll
happily translate from French, Russian, Southern
Appalachian, and German. If you don’t speak those
languages, we’ll draft a translator from those poor
sods who owe us favors.

Like an email, keep it short. Like an email, you
should assume that we already know more than a
bit about hacking, and that we’ll be insulted or—
WORSE!—that we’ll be bored if you include a long
tutorial where a quick reminder would do.

Just use 7-bit ASCII if your language doesn’t
require funny letters, as whenever we receive some-
thing typeset in OpenOffice, we briefly mistake it
for a ransom note. Don’t try to make it thorough
or broad. Don’t use bullet-points, as this isn’t a
damned Powerpoint deck. Keep your code samples
short and sweet; we can leave the long-form code as
an attachment. Do not send us LATEX; it’s our job
to do the typesetting!

Don’t tell us that it’s possible; rather, teach us
how to do it ourselves with the absolute minimum
of formality and bullshit.

Like an email, we expect informal (or faux-
biblical) language and hand-sketched diagrams.
Write it in a single sitting, and leave any editing
for your poor preacherman to do over a bottle of
fine scotch. Send this to pastor@phrack org and
hope that the neighborly Phrack folks—praise be to
them!—aren’t man-in-the-middling our submission
process.

Yours in PoC and Pwnage,
Pastor Manul Laphroaig, D D

72

