
PoC||GTFOP
r
o
o
f

C
o
n
c
e
p
t

G
e
t

T
h
e

F
u
c
k

O
u
t

o r

fo

IN A FIT OF STUBBORN OPTIMISM,

PASTOR MANUL LAPHROAIG
AND HIS CLEVER CREW

SET SAIL TOWARD
WELCOMING SHORES OF

THE GREAT UNKNOWN!

11:1 Please Stand and Be Seated

11:2 In Praise of Junk Hacking

11:3 Emulating Star Wars on a Vector Display

11:4 Tron in 512 Bytes

11:5 Defeating the E7 Protection

11:6 Phrasebook for ARM Cortex M

11:7 Ghetto CFI for x86

11:8 Tourist’s Guide to the MSP430

11:9 This PDF is a Webserver

11:10 In Memoriam: Ben “bushing” Byer

Heidelberg, Baden-Württemberg

Funded by our famous Single Malt Waterfall and
Pastor Laphroaig’s Рентгениздат Gospel Choir,
to be Freely Distributed to all Good Readers, and
to be Freely Copied by all Good Bookleggers.

Это самиздат. Denn was man Schwarz auf Weiß besitzt, kann man getrost nach Hause tragen.
0, $0 USD, £0, 0 RSD, 0 SEK, $50 CAD. pocorgtfo11.pdf. March 17, 2016.

1

Legal Note: Sony relies on the unsubstantiated residency of the unnamed defendant “Bushing” as a basis
for California being the best forum. However, “Bushing” has not been identified, named, served, or connected
with Mr. Hotz in any way that could warrant bringing the only identifiable defendant out to California. If
“Bushing” does exist and can be ascertained at a later date, Sony would have to amend the complaint
to properly name him/her which has not occurred. Thus, New Jersey is an alternative forum that exists
to provide Sony with adequate relief. If Sony can obtain jurisdiction by merely including a hypothetical
defendant by the name of “Bushing” that may live in California, then any Plaintiff can file suit in California
and obtain jurisdiction by adding “Bushing” as a defendant.

Reprints: Bitrot will burn libraries with merciless indignity that even Pets Dot Com didn’t deserve. Please
mirror–don’t merely link!–pocorgtfo11.pdf and our other issues far and wide, so our articles can help fight
the coming robot apocalypse. We like the following mirrors.
https://unpack.debug.su/pocorgtfo/

https://pocorgtfo.hacke.rs/

https://www.alchemistowl.org/pocorgtfo/

http://www.sultanik.com/pocorgtfo/

Technical Note: Thanks to a Funky File Format Fire Sale, the file named pocorgtfo11.pdf is a polyglot
in HTML, PDF, ZIP, and Ruby that executes as a quine over HTTP.

laphroaig% ruby pocorgtfo11.pdf

Printing Instructions: Pirate print runs of this journal are most welcome! PoC‖GTFO is to be printed
duplex, then folded and stapled in the center. Print on A3 paper in Europe and Tabloid (11” x 17”) paper
in Samland. Secret government labs in Canada may use P3 (280 mm x 430 mm) if they like, but even the
Americans on our staff will laugh at the use of awkward standards of measure. The outermost sheet should
be on thicker paper to form a cover.

This is how to convert an issue for duplex printing.

sudo apt-get install pdfjam

pdfbook --short-edge --vanilla --paper a3paper pocorgtfo11.pdf -o pocorgtfo11-book.pdf

Preacherman Manul Laphroaig
Editor of Last Resort Melilot
TEXnician Evan Sultanik
Editorial Whipping Boy Jacob Torrey
Funky File Supervisor Ange Albertini
Assistant Scenic Designer Philippe Teuwen

and sundry others

2

1 Please stand; now, please be seated.

Neighbors, please join me in reading this twelfth
release of the International Journal of Proof of Con-
cept or Get the Fuck Out, a friendly little collection
of articles for ladies and gentlemen of distinguished
ability and taste in the field of software exploita-
tion and the worship of weird machines. This is our
twelfth release, given on paper to the fine neighbors
of Heidelberg.

If you are missing the first eleven issues, we the
editors suggest pirating them from the usual loca-
tions, or on paper from a neighbor who picked up a
copy of the first in Vegas, the second in São Paulo,
the third in Hamburg, the fourth in Heidelberg, the
fifth in Montréal, the sixth in Las Vegas, the seventh
from his parents’ inkjet printer during the Thanks-
giving holiday, the eighth in Heidelberg, the ninth
in Montréal, the tenth in Novi Sad or Stockholm, or
the eleventh in Washington, D.C.

Our own Pastor Laphroaig opens this issue on
page 4 by confessing to be a fan of junk hacking! He
tells us to ignore the publicity and drama around
a hack, to ignore even its target and its CVE. In-
stead, we should learn the mechanism of the hack,
the clever tricks that make it work. Programming
these mechanisms in nifty ways, be they ever so old,
is surely not “junk”—think of it instead as an edu-
cational journey to far and exotic shores, on which
this issue’s great crew of authors stands ready to
take you, neighbors!

In a fit of nostalgia for the good old vector ar-
cade games, Trammel Hudson extended MAME to
support native vector displays of the 1983 Star Wars
arcade game on both his Tektronix 1720 scope and
a Vectrex home vector display. Find it on page 6.

Eric Davisson contributes a 512-byte game for
the PC BIOS on page 9. He discusses some nifty
tricks for self-rewriting code in 16-bit Real Mode
and shows that the fancier features of an operat-
ing system aren’t needed to have a little fun—and
that programming a constrained environment can
be great fun indeed!

On page 15, Peter Ferrie describes his work to-
ward a universal bypass for the E7 protection mode
used on a number of Apple][disks. This is a follow
up to his encyclopedic coverage of protection modes
for this platform in PoC‖GTFO 10:7.

Ryan Speers and Travis Goodspeed have begun
a series of tourist guides, intended to quickly intro-
duce reverse engineers to a new platform. Page 20
provides a lightning-fast introduction to ARM’s
Cortex M series, which you’ll find in modern devices
with a megabyte or less of Flash memory. Page 28
contains similar notes for the Texas Instruments
MSP430, MSP430X, and MSP430X2 architectures,
a 16-bit competitor to the PIC and AVR.

At this journal, we generally frown upon defense,
not because it is easy, but because it is so damned
hard to describe properly. On page 24, Jeffrey Crow-
ell presents a poor man’s method of patching 32-bit
x86 binaries to enforce the control flow graph. With
examples in Radare2 and legible C, you’ll be itching
to write your own generic patchers for large binaries
this weekend.

Page 33 describes how Evan Sultanik made this
PDF—the one that you’re reading—into a poyglot
webserver quine in Ruby with its own самиздат
PoC‖GTFO mirror.

It is with great sadness that we dedicate this re-
lease to the memory of our neighbor Ben Byer, the
“hypothetical defendant by the name of ‘Bushing’ ”
who inspired many of us to put pwnage before poli-
tics, to keep on hacking. We’re gonna miss him.

– — — – — — — — – — –

On page 40, the last page, we pass around the
collection plate. We’re not interested in your dimes,
but we’d love some nifty proofs of concept. And re-
member, one hacker’s “junk hacking” may hold the
nifty tricks needed for another’s treasured exploit!

3

2 In Praise of Junk Hacking

by Pastor Manul Laphroaig
in polite dissent to Daily Dave.

Gather round y’all, young and old, and listen to
a story that I have to tell.

Back in 2014, when we were all eagerly waiting
for </SCORPION> to debut on the TV network for-
merly known as the Columbia Broadcasting System,
a minor ruckus was raised over Junk Hacking. The
moral fiber of the youth, it was said, was being cor-
rupted by a dozen cheap Black Hat talks on popping
embedded systems with old bugs from the nineties.
Who among us high-brow neighbors would sully the
good name of our profession by hacking an ATM
that runs Windows XP, when breaking into XP is
old hat?

Let’s think for just a minute and consider the
best examples of neighborly junk hacking. Per-
haps we’ll find that rather than being mere publicity
stunts, junk hacking is a way to step back from the
daily grind of confidential consulting work, to share
nifty tricks and techniques that are often more in-
teresting than the bug itself.

– — — – — — — — – — –

Our first example today is from everyone’s fa-
vorite doctor in a track suit, Charlie Miller. If you
have the misfortune of reading about his work in
the lay press, you might have heard that he could
blow up laptop batteries by software,1 or that he was
recklessly irresponsible by disabling the power train
of a car with a reporter inside.2 That is to say, from
the lay press articles, you wouldn’t know a damned
thing about what mechanism he experimented with.

So please, read the fucking paper, the battery
hacking paper,3 and ignore what CNN has to say
on the subject. Read about how the Smart Battery
Charger (SBC) is responsible for charging the bat-
tery even when the host is unresponsive, and con-

sider how much more stable this would be than giv-
ing the host responsibility for managing the state.
Read about how a complete development kit is avail-
able for the platform, about how the firmware up-
date is flashed out of order to prevent bricking the
battery.

Read about how the Texas Instruments
BQ20Z80 chip is a CoolRISC 816 microcontroller,
which was identified by Dion Blazakis through
googling opcodes when the instruction set was
not documented by the manufacturer. See that
its mask ROM functions are well documented in
sluu225.pdf.4 Read about how code memory
erases not to all ones, as most architectures would,
but to ff ff 3f because that’s a NOP instruction.

Read about how this architecture wasn’t sup-
ported by IDA Pro, but that a plugin disassem-
bler wasn’t much trouble to write.5 Read about
how instructions on the CoolRISC platform are 22
bits wide and 24-bit aligned, so code might begin at
any 3-byte boundary. See how Charlie bypasses the
firmware checksums in order to inject his own code.

Can you really read all thirty-eight pages with-
out learning one new trick, without learning any-
thing nifty? Without anything more to say than
your disappointment that batteries shipped with the
default password? He who has eyes to read, let him
read!

– — — – — — — — – — –

Loyal readers of this journal will remember
PoC‖GTFO 2:4, in which Natalie Silvanovich gets
remote code execution in a Tamagotchi’s 6502 mi-
crocontroller through a plug-in memory chip. “Big
whoop,” some jerk might say, “local control of mem-
ory is getting root when you already have root!”

Re-read her article; it packs a hell of a lot into
just two pages. The memory that she controls is just
data memory, containing some fixed-size sprites and
single byte describing the game that the cartridge
should load. The game itself, like all other code, is
already in the CPU’s unwritable Mask ROM.

1If you RTFP, you’ll note that the Apple batteries have a separate BQ29312 Analog Frontend (AFE) to protect against such
nonsense, as well as a Matsushita MU092X in case the BQ29312 isn’t sufficient.

2One time, my Studebaker ran out of gas on the highway. Maybe we should start a support group?
3unzip pocorgtfo11.pdf batteryfirmware.pdf
4unzip pocorgtfo11.pdf sluu225.pdf
5unzip pocorgtfo11.pdf bq20z80.py

4

So given just one byte of maneuverability, Na-
talie tried each value, discovering that a switch()

statement had no default case, so values above
0x20 would cause a reboot, while really high val-
ues, above 0xD8, would sometimes jump the game
to a valid screen.

At this point she had a good idea that she was
running off the end of a jump table, but as is com-
mon in the best junk hacking, she had no copy
of the code and needed an exploit to extract the
code. She did, however, know from die photographs
and datasheets that the chip was a GeneralPlus
GPLB52X with a 6502 instruction set. So she came
up with the clever trick of making a background pic-
ture that, when loaded into LCD RAM, would form
a NOP sled into shellcode that dumped memory out
of an I/O port.

By reverse engineering that memory dump, she
was able to replace her hail-Mary of a NOP sled
with perfectly placed, efficient shellcode containing
any number of fancy new features. You can even
send your Tamagotchi to 30C3, if you like.

The point of her paper is no more about securing
the Tamagotchi than Charlie’s is about securing a
battery. The point of the paper is to teach the reader
the mechanism by which she dumped the firmware,
and if you can read those two pages without learning
something new about exploiting a target for which
you have no machine code to disassemble, you aren’t
really trying. He who has eyes to read, let him read!

And this is the crux of the matter, dear neigh-
bors. We become jaded by so much garbage on TV,
so much crap in the news, and so many attempts
to straight-jacket the narrative of security research
by the mistaken belief that it must involve security.
But the very best security research doesn’t involve
security! The very best research has no CVE, de-
mands no patch, and has no direct relation to any-
thing from your grandmother’s credit card number
to your server’s shadow file.

The very best research is that which teaches you
something new about the mechanism by which a ma-
chine functions. It teaches you how to build some-
thing, how to break something, or how to take some-
thing apart, but most of all it teaches you how the
hell that thing really works.

So to hell with the target and to hell with the
reporters. Teach me how a thing works, and teach
me the techniques that you needed to do something
clever with it. But if you casually dismiss the clever
tricks learned from hacking an Apple][, a battery,
or a Tamagotchi, I’m afraid that I’ll have to ask you
politely, but firmly, to get the fuck out.6

6Remember, though, that redemption is for everyone, and that one day you may find a strange and radiant machine you
will treasure for the cleverness of its mechanisms, no matter if others call it junk. On that day we will welcome you back in the
spirit of PoC!

5

3 Emulating Star Wars on a Vector Display

by Trammell Hudson

Star Wars was one of Atari’s best vector games—
possibly, the pinnacle of the golden age of arcade
games. It featured 3D color vector graphics in an
era when most games were low-resolution bitmaps.
It also had digitized voice samples from the movie,
while its contemporary games were still using 8-bit
beeps.

The Starwars ROMs, along with almost all of
Atari’s vector games, can be emulated with MAME
and the vectors extracted for display on actual vec-
tor hardware. Even though modern screens have ex-
ceeded the 10-bit resolution used by the game, the
unique quality of a vector monitor is hard to convey.
When compared to the low-resolution bitmap on a
television monitor, the sharp lines and high resolu-
tion of the vectors are really stunning.

The graphics were 3D wireframe renderings that
included features like the Tie fighters breaking up
when they were hit by the player’s lasers. There
was no hidden wireframe removal; at this time it
was not computationally feasible to do so.

3.1 Digital to Analog Converters

There were two common ways to generate the ana-
log voltages to steer the electron beam in the vector
monitor. Most early Atari games used the “Digital
Voltage Generator,” which used dual 10-bit DACs
that directly output -2.5 to +2.5 volt signals. Star-
wars, however, used the “Analog Voltage Genera-
tor,” in which the DACs generated the slope of the
line, and opamps integrated the values to produce
the output voltage. This is significantly more com-
plex to emulate, and modern DACs and microcon-
trollers make it fairly easy to generate the analog
voltages to drive the displays with resolution exceed-
ing the precision of the old opamps.

6

The open source hardware v.st quad-DAC
boards output do 1.2 million samples per second,
which is enough to steer the beam using Bresen-
ham’s line algorithm at a resolution of about 12 bits.
While this is generating discrete points, the analog
nature of the CRT means that smooth lines will be
traced in the phosphor. The ARM’s DMA engine
clocks out the X and Y coordinates as well as the in-
tensity, allowing the CPU to process incoming data
from the USB serial connection without disrupting
the output.

Source code for the v.st is available online or as
an attachment to this PDF.7

3.2 Displays

Two inexpensive vector displays are the Tek-
tronix 1720 vectorscope, a piece of analog NTSC
video test equipment from a television studio, and
the Vectrex, one of the only home vector console
systems. The Tek uses an Electrostatic deflection
CRT, which gives it very high bandwidth and al-
most instant transits between points, but at the
cost of a very small deflection angle that results in
a tiny screen and a very deep tube. The Vectrex
has a magnetic deflection CRT, which allows it to
be much shallower and significantly larger, but it re-
quires many microseconds for the beam to stabilize
in a new position. As a result, the DAC needs to
take into account the “inertia” of the beam and wait
for it to catch up.

3.3 Gameplay

Figure 2 compares the Tek 1720 on the left to the
Vectrex on the right, which isn’t very impressive on
paper but will animate as a short video if you open
pocorgtfo11.pdf in Adobe Reader. A longer video
showing some of the different scenes is available. As
the number of line segments increases, the slower
display starts to flicker.

The game was played with a yoke, so the Y-axis
mapping might seem backwards for a normal joy-
stick. You can invert it in MAME by pressing Tab
to bring up the config menu, selecting “Analog Con-
trols” and “AD Stick Y Reverse”.

While playing it on a small Vectrex or even
smaller vectorscope doesn’t quite capture the thrill
of the arcade, it is quite fun to relive the vector art
æsthetic at home and hear the digitized voice of Obi-
Wan Kenobi telling you that “the Force will be with
you, always.”

7git clone https://github.com/osresearch/vst

unzip pocorgtfo11.pdf vst.tar.bz2

7

D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
LOAD

Q9
Q8
Q7
Q6
Q5
Q4
Q3
Q2
Q1
Q0

D9
D8
D7
D6
D5
D4
D3
D2
D1
D0

LOAD

Up/Down
Clock

U/D
Clk

Counter

B1
B2
B3
B4
B5
B6
B7
B8
B9
B10

DAC

MSB

Vmax/2

SW

S/H

Buffer

Sample and Hold

VOUT

-512 to 511 =

-Vmax/2 to Vmax/2
C

Figure 1 – Digital to Analog Signal Generator

Figure 2 – Tek 1720 vs Vectrex

8

4 Master Boot Record Nibbles; or,
One Boot Sector PoC Deserves Another

by Eric Davisson

I was inspired by the boot sector Tetranglix game
by Juhani Haverinen, Owen Shepherd, and Shikhin
Sethi published as PoC‖GTFO 3:8. I feel more cre-
ative when dealing with extreme limitations, and
512 bytes (510 with the 0x55AA signature) of real-
mode assembly sounded like a great way to learn
BIOS API stuff. I mostly learned some int 0x10

and 0x16 from this exercise, with a bit of int 0x19

from a pull request.

The game looks a lot more like snake or nibbles,
except that the tail never follows the head, so the
game piece acts less like a snake and more like a
streak left in Tron. I called it Tron Solitaire be-
cause there is only one player. This game has an
advanced/dynamic scoring system with bonus and
trap items, and progressively increasing game speed.
This game can also be won.

I’ve done plenty of protected mode assembly and
machine code hacking, but for some reason have
never jumped down to real mode. Tetranglix gave
me a hefty head start by showing me how to do
things like quickly setting up a stack and some video
memory. I would have possibly struggled a little
with int 0x16 keyboard handling without this code
as a reference. Also, I re-used the elegant ran-
dom value implementation as well. Finally, the PIT
(Programmable Interval Timer) delay loop used in
Tetranglix gave me a good start on my own dynam-
ically timed delay.

I also learned how incredibly easy it was to get
started with 16-bit real mode programming. I owe
a lot of this to the immediate gratification from
utilities like qemu. Looking at OS guides like the
osdev.org wiki was a bit intimidating, because
writing an OS is not at all trivial, but I wanted
to start with much less than that. Just because I
want to write real mode boot sector code doesn’t
mean I’m trying to actually boot something. So a
lot of the instructions and guides I found had a lot
of information that wasn’t applicable to my unusual
needs and desires.

I found that there were only two small things I
needed to do in order to write this code: make sure
the boot image file is exactly 512 bytes and make
sure the last two bytes are 0x55AA. That’s it! All
the rest of the code is all yours. You could literally
start a file with 0xEBFE (two-byte unconditional in-
finite “jump to self” loop), have 508 bytes of nulls
(or ANYTHING else), and end with 0x55AA, and
you’ll have a valid “boot” image that doesn’t error
or crash. So I started with that simple PoC and
built my way up to a game.

The most dramatic space savers were also the
least interesting. Instead of cool low level hacks, it
usually comes down to replacing a bad algorithm.
One example is that the game screen has a nice blue
border. Initially, I drew the top and bottom lines,
and then the right and left lines. I even thought
I was clever by drawing the right and left lines to-
gether, two pixels at a time—because drawing a right
pixel and incrementing brings me to the left and
one row down. I used this side-effect to save code,
rewriting a single routine to be both right and left.

However, all of this was still too much code. I
tried something simpler: first splashing the whole
screen with blue, then filling in a black box to only
leave the blue border. The black box code still
wasn’t trivial, but much less code than the previ-
ous method. This saved me sixteen precious bytes!

Less than a week after I put this on Github, my
friend Darkvoxels made a pull request to change the
game-over screen. Instead of splashing the screen
red and idling, he just restarts the game. I liked
this idea and merged. As his game-over is just a
simple int 0x19, he saved ten bytes.

Although I may not have tons of reusable subrou-

9

tines, I still avoided inlining as much as possible. In
my experience, inlining is great for runtime perfor-
mance because it cuts out the overhead of jumping
around the code space and stack overhead. How-
ever, this tends to create more code as the tradeoff.
With 510 effective bytes to work with, I would gladly
trade speed for space. If I see a few consecutive in-
structions that repeat, I try to make a routine of
it.

I also took a few opportunities to use self-
modifying code to save on space. No longer do I
have to manually hex hack the w bit in the rwx at-
tribute in the .text section of an ELF header; real
mode trusts me to do all of the “bad” things that
dev hipsters rage at me about. So the rest of this
article will be about these hacks.

Two of the self-modifying code hacks in this code
are similar in concept. There are a couple of places
where I needed something similar to a global vari-
able. I could push and pop it to and from the stack
when needed, but that requires more bytes of code

overhead than I had to spare. I could also use a
dedicated register, but there are too few of those.
On the other hand, assuming I’m actually using this
dynamic data, it’s going to end up being part of an
operand in the machine code, which is what I would
consider its persisted location. (Not a register, not
the stack, but inside the actual code.)

As the pixel streak moves around on the game-
board, the player gets one point per character move-
ment. When the player collects a bonus item of
any value, this one-point-per gets three added to it,
becoming a four-points-per. If another additional
bonus item is collected, it would be up to 7 points.
The code to add one point is selfmodify: add ax,

1. When a bonus item is collected, the routine
for doing bonus points also has this line add byte

[selfmodify + 2], 3. The +2 offset to our add

ax, 1 instruction is the byte where the 1 operand
was located, allowing us to directly modify it.

10

On a less technical note, this adds to the strategy
of the game; it discourages just filling the screen up
with the streak while avoiding items (so as to not
create a mess) and just waiting out the clock. In
fact, it is nearly impossible to win this way. To win,
it is a better strategy to get as many bonuses as
early as possible to take advantage of this progres-
sive scoring system.

Another self-modifying code trick is used on
the “win” screen. The background to the “YOU
WIN!” screen does some color and character cycling,
which is really just an increment. It is initialized
with winbg: mov ax, 0, and we can later incre-
ment through it with inc word [winbg + 0x01].
What I also find interesting about this is that we
can’t do a space saving hack like just changing mov

ax, 0 to xor ax, ax. Yes, the result is the same;
ax will equal 0x0000 and the xor takes less code
space. However, the machine code for xor ax, ax is
0x31c0, where 0x31 is the xor and 0xc0 represents
“ax with ax.” The increment instruction would be
incrementing the 0xc0 byte, and the first byte of the
next instruction since the word modifier was used
(which is even worse). This would not increment an
immediate value, instead it would do another xor of
different registers each time.

Also, instead of using an elaborate string print
function, I have a loop to print a character at a
pointer where my “YOU WIN!” string is stored
(winloop: mov al, [winmessage]), and then use
self-modifying code to increment the pointer on each
round. (inc byte [winloop + 0x01])

The most interesting self-modifying code in this
game changes the opcode, rather than an operand.
Though the code for the trap items and the bonus
items have a lot of differences, there are a significant
amount of consecutive instructions that are exactly
the same, with the exception of the addition (bonus)
or the subtraction (trap) of the score. This is be-
cause the score actually persists in video memory,
and there is some code overhead to extract it and
push it back before and after adding or subtracting
to it.

So I made all of this a subroutine. In my as-
sembly source you will see it as an addition (math:
add ax, cx), even though the instruction initialized
there could be arbitrary. Fortunately for me, the
machine code format for this addition and subtrac-
tion instruction are the same. This means we can
dynamically drop in whichever opcode we want to
use for our current need on the fly. Specifically, the
add I use is ADD r/m16, r16 (0x01 /r) and the sub

I use is SUB r/m16, r16 (0x29 /r). So if it’s a bonus
item, we’ll self modify the routine to add (mov byte

[math], 0x01) and call it, then do other bonus re-
lated instructions after the return. If it’s a trap item,
we’ll self modify the routine to subtract (mov byte

[math], 0x29) and call it, then do trap/penalty in-
structions after the return. This whole hack isn’t
without some overhead; the most exciting thing is
that this hack saved me one byte, but even a single
byte is a lot when making a program this small!

I hope these tricks are handy for you when writ-
ing your own 512-byte game, and also that you’ll
share your game with the rest of us. Complete code
and prebuilt binaries are available in the ZIP portion
of this release.8

8unzip pocorgtfo11.pdf tronsolitare.zip

11

1 ; Tron So l i t a r e
; ∗This i s a PoC boot sec tor (<512 by te s) game

3 ; ∗Controls to move are j u s t up/down/ l e f t / r i g h t
; ∗Avoid touching yourse l f , b lue border , and the

5 ; unlucky red 7

7 [ORG 0x7c00] ; add to o f f s e t s
LEFT EQU 75

9 RIGHT EQU 77
UP EQU 72

11 DOWN EQU 80

13 ; I n i t the environment
; i n i t data segment

15 ; i n i t s tack segment a l l o c a t e area of mem
; i n i t E/ video segment and a l l o c a t e area of mem

17 ; Set to 0x03/80x25 t e x t mode
; Hide the cursor

19 xor ax , ax ;make i t zero
mov ds , ax ;DS=0

21
mov ss , ax ; s tack s t a r t s at 0

23 mov sp , 0x9c00 ; 200h past code s t a r t

25 mov ax , 0xb800 ; t e x t v ideo memory
mov es , ax ;ES=0xB800

27
mov al , 0x03

29 xor ah , ah

int 0x10
31

mov al , 0x03 ; Some BIOS crash without t h i s
33 mov ch , 0x26

inc ah

35 int 0x10

37 ;Draw Border
; F i l l in a l l b lue

39 xor di , di

mov cx , 0x07d0 ; whole screens worth
41 mov ax , 0 x1f20 ; empty b lue background

rep stosw ; push i t to video memory
43

; f i l l in a l l b l ack except for remaining b lue edges
45 mov di , 158 ; Almost 2nd row 2nd column (need

; to add 4)
47 mov ax , 0x0020 ; space char on b lack on b lack

f i l l i n :
49 add di , 4 ; Adjust for next l i n e and column

mov cx , 78 ; inner 78 columns (exc lude s ide
51 ; borders)

rep stosw ; push to video memory
53 cmp di , 0 x0e f e ; I s i t the l a s t co l o f l a s t l i n e

;we want?
55 jne f i l l i n ; I f not , loop to next l i n e

57 ; i n i t the score
mov di , 0 x0f02

59 mov ax , 0x0100 ;#CHEAT (You can se t the i n i t i a l
; score h igher than t h i s)

61 stosw

63 ; Place the game piece in s t a r t i n g pos i t i on
mov di , 0x07d0 ; s t a r t i n g pos i t i on

65 mov ax , 0 x2f20 ; char to d i sp l ay
stosw

67
mainloop :

69 ca l l random ;Maybe p lace an item on screen

71 ;Wait Loop
; Get speed (based on game/ score progress)

73 push di

mov di , 0 x0f02 ; s e t coordinate
75 mov ax , [es : di] ; read data at coordinate

pop di

77 and ax , 0 xf000 ; ge t most s i g n i f i c a n t n i b b l e
shr ax , 14 ; now va lue 0−3

79 mov bx , 4 ;#CHEAT, d e f au l t i s 4 ; make
; amount h igher for o v e r a l l

81 ; s lower (but s t i l l

; p rog re s s i v e) game
83 sub bx , ax ; bx = 4 − (0−3)

mov ax , bx ; ge t i t in to ax
85

mov bx , [0 x046C] ; Get timer s t a t e
87 add bx , ax ;Wait 1−4 t i c k s (p rogre s s i v e

; d i f f i c u l t y)
89 ; add bx , 8 ; unprogre s s i v e l y slow cheat

;#CHEAT (comment above l i n e out and uncomment
91 ; t h i s l i n e)

delay :
93 cmp [0 x046C] , bx

jne delay
95

; Get keyboard s t a t e
97 mov ah , 1

int 0x16
99 jz pe r s i s t e d ; i f no keypress , jump to

; p e r s i s t i n g move s t a t e
101

; Clear Keyboard bu f f e r
103 xor ah , ah

int 0x16
105

; Check for d i r e c t i ona l pushes and take act ion
107 cmp ah , LEFT

je l e f t
109 cmp ah , RIGHT

je r i gh t
111 cmp ah , UP

je up
113 cmp ah , DOWN

je down
115 jmp mainloop

117 ; Otherwise , move in d i r e c t i on l a s t chosen
pe r s i s t e d :

119 cmp cx , LEFT
je l e f t

121 cmp cx , RIGHT
je r i gh t

123 cmp cx , UP
je up

125 cmp cx , DOWN
je down

127
; This w i l l only happen be fore f i r s t keypress

129 jmp mainloop

131 l e f t :
mov cx , LEFT ; f o r pe r s i s t enc

133 sub di , 4 ; coordinate o f f s e t correc t ion
ca l l movement_overhead

135 jmp mainloop
r i gh t :

137 mov cx , RIGHT
ca l l movement_overhead

139 jmp mainloop
up :

141 mov cx , UP
sub di , 162

143 ca l l movement_overhead
jmp mainloop

145 down :
mov cx , DOWN

147 add di , 158
ca l l movement_overhead

149 jmp mainloop

151 movement_overhead :
ca l l co l l i s i on_check

153 mov ax , 0 x2f20
stosw

155 ca l l s co r e
ret

157
co l l i s i on_check :

159 mov bx , di ; current l o ca t i on on screen
mov ax , [es :bx] ; grab video bu f f e r + current

161 ; l o ca t i on

163 ; Did we Lose?
;#CHEAT: comment out a l l 4 o f these checks

165 ; (8 i n s t r u c t i on s) to be i n v i n c i b l e
cmp ax , 0 x2f20 ; did we land on green

167 ; (s e l f)?
je gameover

169 cmp ax , 0 x1f20 ; did we land on b lue
; (border)?

171 je gameover
cmp bx , 0 x0f02 ; did we land in score

173 ; coordinate?
je gameover

175 cmp ax , 0 xc f37 ; magic red 7
je gameover

177
; Score Changes

179 push ax ; save copy of ax/ item
and ax , 0 xf000 ;mask background

181 cmp ax , 0xa000 ; add to score
je bonus

183 cmp ax , 0xc000 ; sub t rac t from score

12

je penalty
185 pop ax ; r e s t o r e ax

ret

187
bonus :

189 mov byte [math] , 0x01
;make i t ems t u f f : rout ine use

191 ; add opcode
ca l l i t ems tu f f

193 stosw ; put data back in
mov di , bx ; r e s t o r e coordinate

195 add byte [s e l fmod i f y + 2] , 3

197 ret

penalty :
199 mov byte [math] , 0x29

;make i t ems t u f f : rout ine use
201 ; sub opcode

ca l l i t ems tu f f
203 cmp ax , 0xe000 ; san i ty check for in t e ge r

; underf low
205 ja underf low

stosw ; put data back in
207 mov di , bx ; r e s t o r e coordinate

ret

209
underf low :

211 mov ax , 0x0100
stosw

213 mov di , bx

ret

215
i t ems tu f f :

217 pop dx ; s t o re return
pop ax

219 and ax , 0 x000f
inc ax ; 1−8 ins tead of 0−7

221 shl ax , 8 ; mu l t i p l y va lue by 256
push ax ; s t o re the va lue

223
mov bx , di ; save coordinate

225 mov di , 0 x0f02 ; s e t coordinate
mov ax , [es : di] ; read data at coordinate and

227 ; sub t rac t from score
pop cx

229 math :
add ax , cx ; ’ add ’ i s j u s t a s u g g e s t i o n . . .

231 push dx ; r e s t o r e return
ret

233
sco r e :

235 push di

mov di , 0 x0f02 ; s e t coordinate
237 mov ax , [es : di] ; read data at coordinate

; f o r each mov of character , add ’n ’ to score
239 ; t h i s source shows add ax , 1 , however , each

; bonus item tha t i s p icked up increments t h i s
241 ; va lue by 3 each time an item i s picked up.

; Yes , t h i s i s s e l f modifying code , which i s
243 ; why the l a b l e ’ s e l fmod i f y : ’ i s seen above , to

; be convenient ly used as an address to p i vo t
245 ; o f f o f in an add byte [s e l fmod i f y + o f f s e t to

; ’ 1 ’] , 3 i n s t ru c t i on
247 s e l fmod i f y : add ax , 1 ; increment character in

; coordinate
249 stosw ; put data back in

pop di

251 ;Why 0xf600 as score c e i l i n g :
; i f i t was something l i k e 0 x f f f f , a score from

253 ; 0 x f f f e would l i k l e y in t e g e r over f low to a low
; range (due to the progre s s i v e) s co r ing .

255 ; 0 xf600 g i v e s a good amount of s l a c k for t h i s .
; However , i t ’ s s t i l l " t e c hn i c a l l y " p o s s i b l e to

257 ; over f low ; for example , h i t t i n g a ’7 ’ bonus
; item a f t e r a lready g e t t i n g more than 171

259 ; bonus items (2048 po in t s for bonus , 514
; po in t s per move) would make the score go from

261 ; 0 x f 5 f f to 0x0001.
cmp ax , 0 xf600 ; i s the score high enough to

263 ; ’ win ’ ;#CHEAT
ja win

265 ret

267 random :
; Decide whether to p lace bonus/ trap

269 rdt s c
and ax , 0 x000f

271 cmp ax , 0x0007
jne undo

273
push cx ; save cx

275
; Gett ing random p i x e l

277 redo :
rd t s c ; random

279 xor ax , dx ; xor i t up a l i t t l e
xor dx , dx ; c l e a r dx

281 add ax , [0 x046C] ;moar randomness
mov cx , 0x07d0 ;Amount of p i x e l s on screen

283 div cx ; dx now has random va l
shl dx , 1 ; ad jus t for ’ even ’ p i x e l va lues

285 ; Are we c l obbe r ing other data?
cmp dx , 0 x0f02 ; I s the p i x e l the score?

287 je redo ; Get a d i f f e r e n t va lue

289 push di ; s t o re coord
mov di , dx

291 mov ax , [es : di] ; read data at coordinate
pop di ; r e s t o r e coord

293 cmp ax , 0 x2f20 ; Are we on the snake?
je redo

295 cmp ax , 0 x1f20 ; Are we on the border?
je redo

297
; Display random p i x e l

299 push di ; save current coordinate
mov di , dx ; put rand coord in current

301
; Decide on item−type and va lue

303 powerup :
rd t s c ; random

305 and ax , 0x0007 ; ge t random 8 va lues
mov cx , ax ; cx has rand va lue

307 add cx , 0 x5f30 ; b a s e l i n e
rd t s c ; random

309 ; background e i t h e r ’A’ or ’C’ (l i g h t green or
; red)

311 and ax , 0x2000 ; keep b i t 13
add ax , 0x5000 ; turn b i t 14 and 12 on

313 add ax , cx ; item−type + value

315 stosw ; d i s p l a y i t
pop di ; r e s t o r e coordinate

317
pop cx ; r e s t o r e cx

319
undo :

321 ret

323 gameover :
int 0x19 ; Reboot the system and r e s t a r t

325 ; the game.

327 ; Legacy gameover , doesn ’ t reboot , j u s t ends with
; red screen

329 ; xor di , d i
;mov cx , 80∗25

331 ;mov ax , 0 x4f20
; rep stosw

333 ; jmp gameover

335 win :
; c l e a r screen

337
mov bx , [0 x046C] ; Get timer s t a t e

339 add bx , 2
delay2 :

341 cmp [0 x046C] , bx

jne delay2
343

mov di , 0
345 mov cx , 0x07d0 ; enough for f u l l screen

winbg : mov ax , 0x0100
347 ; xor ax , ax wont work , needs to

; be t h i s machine−code format
349 rep stosw ; commit to video memory

351 mov di , 0x07c4 ; coord to s t a r t ’YOU WIN! ’ message
xor cl , c l ; c l e a r counter r e g i s t e r

353 winloop : mov al , [winmessage]
; ge t win message po in ter

355 mov ah , 0 x0f ; white t e x t on b lack background
stosw ; commit char to video memory

357 inc byte [winloop + 0x01]
; next character

359 cmp di , 0x07e0 ; i s i t the l a s t character?
jne winloop

361 inc word [winbg + 0x01]
; incrememnt f i l l char/ f g /bg

363 ; (whichever i s next)
sub byte [winloop + 0x01] , 14

365 ; back to f i r s t character upon
; next f u l l loop

367 jmp win

369 winmessage :
db 0x02 , 0x20

371 dq 0 x214e495720554f59 ;YOU WIN!
db 0x21 , 0x21 , 0x20 , 0x02

373
;BIOS s i g and padding

375 times 510−($−$$) db 0
dw 0xAA55

377
; Pad to f l oppy d i s k .

379 ; t imes (1440 ∗ 1024) − ($ − $$) db 0

13

14

5 In Search of the Most Amazing Thing; or, Towards a Universal
Method to Defeat E7 Protection on the Apple][Platform

by Peter Ferrie (qkumba, san inc)
with thanks to 4am

 E7 E7 E7 E7

11100111011100111001110011111100111

 XX EE E7 FC

 E7 E7 E7 E7

11100111111001111110011111100111

 XX FC FC FC

normal start

delayed start

original stream

normal start

delayed start

stream copy

5.1 Introduction

In the early days, there was a protection technique
known as the “generic bit-slip protection.” In mod-
ern times, the cracker known as 4am has dubbed
it the “E7 bitstream,” because of the trigger values
that are used to locate it. It was a very popular
technique.

While many nibble-checks could be defeated sim-
ply by not allowing them to run at all, some protec-
tion routines required that the code be run to pro-
duce their side effects, such as to decrypt pages or
to emit certain values that are checked later. At a
high level, our goal is therefore to simulate the E7

bitstream entirely, allowing the protection routine
to run as usual. That is, using a data-only solution
to avoid making any changes to the code. Stated ex-
plicitly, our goal is to produce either disks that can
be copied by COPYA (which, during a copy operation,
converts nibble data to sector data and then back
again) or “.dsk”-format disk images (which contain
only sector data). Therefore, we need sector data
that, when written to disk, produce nibble data that
pass the protection check. For that to be possible,
we must understand the protection itself and the
code that uses it.

A primer on the hardware in general and this
technique in particular was included in PoC‖GTFO
10:7. The theory is that after issuing an access of
Q6H ($C08D+(slot*16)), the QA switch of the Data
Register will receive a copy of the status bits, where
it will remain accessible for four CPU cycles. After
four CPU cycles, the QA switch of the Data Register
will be zeroed. Meanwhile, assuming that the disk
is spinning at the time, the Logic State Sequencer

continues to shift in the new bits. When the QA
switch of the Data Register is zeroed, it discards
the bits that were already shifted in, and the hard-
ware will shift in bits as though nothing has been
read previously. The relevant code looks like this:

READNIB EQU $C08C
RSTLATCH EQU $C08D

 LDY #0
NIB1
 LDA READNIB,X*

 BPL NIB1

 DEY
 BEQ FAIL

 CMP #$D5
 BNE NIB1

 LDY #0
NIB2
 LDA READNIB,X
 BPL NIB2

 DEY
 BEQ FAIL

 CMP #$E7
 BNE NIB2

NIB3
 LDA READNIB,X
 BPL NIB3
 CMP #$E7
 BNE FAIL

NIB4
 LDA READNIB,X
 BPL NIB4
 CMP #$E7
 BNE FAIL

 LDA RSTLATCH,X

 LDY #$10

 BIT $06
NIB5
 LDA READNIB,X
 BPL NIB5

 DEY
 BEQ FAIL

 CMP #$EE
 BNE NIB5 * X = BootSlot << 4

try 256 times:
 read nibble, compare with D5

try 256 times: (*1)
 read nibble, compare with E7

read nibble, compare with E7

read nibble, compare with E7

desynch

try 16 times: (*2)
 read nibble, compare with EE

ensure >4 cycles between reads

15

Interestingly, the bit $06 instruction is a misdi-
rection. It exists only for the purpose of consuming
some cycles. Any other instruction of equal duration
could have been used, and it might be considered a
watermark. While it is the value that exists most
commonly, some titles changed the value of the ad-
dress to 80 or FF, and these versions were spread,
too.

In the most common implementation of the
E7 protection, the stream on disk appears as
D5 E7 E7 E7 E7 E7 E7 E7 E7 E7 E7 E7 E7 with
some harmless zero-bits in between. So from where
do the other values come? The magic is in the tim-
ing of the reads, and timing is everything, so we
must count the cycles!

LDA READNIB,X
BPL NIB4
CMP #$E7
BNE FAIL

LDA RSTLATCH,X

LDY #$10

BIT $06

2 cycles
2 cycles
2 cycles

4 cycles

2 cycles

3 cycles

15 cycles

One bit is shifted in every four CPU cycles, so
a delay of 15 CPU cycles is enough for three bits
to be shifted in. Those bits are discarded. How-
ever, since the CPU and the Disk][system are not
synchronized, then depending on exactly when the
initial read began, there can be up to two additional
cycles in the total count. That puts us in the 16 cy-
cle range, which is sufficient for a fourth bit to be
shifted in and then discarded. In any case, the hard-
ware sees it like this, due to a slip of three (or four)
bits:

D5 E7 E7 E7 [slip] EE E7 FC EE E7 FC EE

EE FC

In binary, the stream looks like this, with the
seemingly redundant zero-bits in bold.

11010101 11100111 11100111 11100111

 D5 E7 E7 E7

11100111 0 11100111 00 11100111 11100111 0 11100111 00

 E7 E7 E7 E7 E7

11100111 11100111 0 11100111 0 11100111 11100111

 E7 E7 E7 E7 E7

However, by skipping the first three or four bits,
the stream looks quite different.

11100 11101110 0 11100111 00 11111100 11101110

 EE E7 FC EE

 0 11100111 00 11111100 11101110 0 11101110 0 11111100 111...

 E7 FC EE EE FC

skipped

The old zero-bits are still in bold, and the newly
exposed zero-bits are in italics. We can see that
the old zero-bits form part of the new stream. This
decodes to EE E7 FC EE E7 FC EE EE FC, and we
have our magic values. The fourth bit must be a
zero-bit in the original stream in case only three bits
are slipped. Having the fifth bit be a zero-bit in the
original stream makes a nice pattern of repeating
values, if for no other reason.

5.2 Well-Groomed Data

In order to defeat this at all, we need to produce
a regular 6-and-2 encoded sector which can be read
by real hardware and copied by regular DOS.

We start by exploiting the point marked by (*1).
There’s a search for E7 after the D5. This allows us
to introduce a full data prologue without breaking
the check. So now we have this:

D5 AA AD E7 E7 E7 E7 E7 E7 E7 E7 E7 E7

E7 E7 ...

We can even conclude it with a regular epilogue
so that there are no read errors. So now we have
this:

D5 AA AD E7 E7 E7 E7 E7 E7 E7 E7 E7 E7

E7 E7 ... DE AA

It looks like a regular sector. The next step is to
fill the stream with the appropriate values, including
simulating the presence of the timing bits.

5.3 The Hard Stuff

We will use Bank Street Writer III for our first
attempt, since it is the simplest example. Bank
Street Writer III requires only one nibble from the
pattern to be valid as an 8-bit decryption key for one
page of memory. That nibble appears at a position
four nibbles after the EE, and its value must be E7,
so our pattern looks like this:

EE ?? ?? ?? E7 ...

Since we can’t rely on timing bits in our stream
(because we need sector data that produces nibble

16

data that this code interprets as valid), we can’t
place the EE inside a pair of E7s because after the bit-
slip the wrong value will be read. Instead, we have
to encode the value EE directly after discarding the
first three bits, and placing a zero-bit in the fourth
bit for compatibility purposes. In binary, that looks
like this:

???01110 1110???? ???????? ????????

???????? 11100111 ...

After the bit-slip (and our extra zero-bit), the
hardware sees:

...11101110 ???????? ???????? ????????

???? [11100111] ...

We must make those last four bits “disappear,” in
order to align our E7 value correctly and allow it to
be seen. If we turn those four bits into zeroes and
distribute them within the stream, while adhering
to the rule of not more than two consecutive zeroes,
and replace the rest with ones, we get this:

...11101110 11111111 00 11111111 00

11111111 [11100111] ...

The hardware reads this as EE FF FF FF E7.
Then we prepend one-bits and a zero-bit to the first
(partial) nibble, like this:

[1110]11101110 11111111 00 11111111 00

11111111 [11100111] ...

After realigning the stream, we have this:
11101110 11101111 11110011 11111100

11111111 [11100111] ...

On disk, it appears as EE EF F3 FC FF E7.
The final step is to pad the data to a multiple of

the sector size, so that we have a complete sector.
We must also include the calculate the proper check-
sum. The remaining contents of the sector at this
point are entirely arbitrary. We could place a text
message or draw a picture, if we chose. Perhaps the
most aesthetic version is to include a nibble which
will zero the running value, and then fill the rest of
the sector with 96s, since 96 is the nibble value for
zero. This will yield a sector which is devoid of all
content other than the needed values. If that version
is chosen, then a quick lookup in the nibble transla-
tion table shows us that the nibble value which will
zero the running value is F3, so our whole stream
appears as:

D5 AA AD E7 E7 E7 EE EF F3 FC FF E7 F3

96 96 ... DE AA

Great, it runs on hardware.

5.4 Apple for the Win, or Not.

Then we try AppleWin (as at 1.25.0.4). It
doesn’t work. Why not? Because instead of shifting
bits into the data latch one at a time until the top
bit is set, AppleWin shifts in an entire nibble im-
mediately. It means that AppleWin does not (and
cannot!) support bit-slip at all. Hmm, can we sup-
port both at the same time? Let’s see about that.

We need to encode the first nibble as an EE, while
also allowing a bit-slipping hardware to decode it as
an EE. Well, we have that already, so we’re halfway
there! That just leaves the value four nibbles af-
ter the EE, which is currently the arbitrary value of
FF. We change that FF to E7, so our stream on disk
appears as:

EE EF F3 FC E7 E7

The final step is to pad the sector as we did pre-
viously. Using the aesthetic choice again, we zero
the running value and then fill the rest of the sector
with 96s. A quick lookup in the nibble translation
table shows us that the needed value is D6, so our
whole stream appears as:

D5 AA AD E7 E7 E7 EE EF F3 FC E7 E7 D6

96 96 ... DE AA

We have a regular sector that works on hardware
and AppleWin at the same time.

5.5 Totally Rad

Next up is Rad Warrior. It requires four nibbles
from the pattern to be valid (as a 32-bit decryp-
tion key for four pages of memory), starting with
the fourth nibble. It means that our Bank Street
Writer III technique won’t work because the pat-
tern will be read differently between the bit-slip and
the non-bitslip version, after the fourth nibble.

We have to come up with another technique.
We do this by exploiting the point marked by (*2).
There’s a search for the EE. It means that we can
insert nibbles after the point of the bit-slip, which
will re-sync the stream to the non-slip form. At that
point, we can insert any pattern that we need. We
start with an arbitrary compatible sequence:

EF FF FF FF

17

In binary, it’s:
11101111 11111111 11111111 11111111

After the bit-slip (and our extra zero-bit), the
hardware sees:

...11111111 11111111 11111111 1111

As above, we must make those last four bits dis-
appear, in order to align our pattern later. As above,
we turn the four bits into zeroes and distribute them
within the stream, while adhering to the rule of not
more than two consecutive zeroes. Let’s try this:

...0 11111111 00 11111111 0 11111111

The hardware reads this as FF FF FF. Then we
prepend one-bits and a zero-bit to the first (partial)
nibble again, like this:

[1110]011111111 00 11111111 0 11111111

After realigning the stream, we have this:
11100111 11111001 11111110 11111111

On disk, it appears as:
E7 F9 FE FF

That final FF is redundant, so we remove it.
Then we append our complete pattern without any
consideration for bit-slip. Our stream looks like this:

E7 F9 FE EE E7 FC EE E7 FC EE EE FC

The final step is to pad the sector as we did pre-
viously. Using the aesthetic choice again, we zero
the running value and then fill the rest of the sector
with 96s. A quick lookup in the nibble translation
table shows us that the needed value is FB, so our
whole stream appears as:

D5 AA AD E7 E7 E7 E7 F9 FE EE E7 FC EE

E7 FC EE EE FC FB 96 96 ... DE AA

We have a regular sector that works on hardware
and AppleWin at the same time.

It also immediately supports Batman and Prince
of Persia, both of which require the entire pattern
(as a 64-bit decryption key for five pages of mem-
ory in Batman, and as a seed for several check-bytes
during gameplay in Prince of Persia). Superb!

5.6 A Small Bump in the Road

Then we try it all in MAME (as of 0.169), because
MAME is supposed to behave like the hardware. . .
But. It. Does. Not. Work. Well, shit. And why
not? Because while MAME does support bit-slip, it
always consumes four bits for the code above, but
most critically, it treats the bit in the fifth position
as though it were always a one-bit.

It means that these four sequences are all de-
coded as 11111111 00 11111111 00 after the bit-
slip. (Only one of which is correct.)

1 11111111 11110011 11111100
11101111 11110011 11111100

3 11110111 11110011 11111100
11100111 11110011 11111100

11110011 11110011 11111100 is decoded as
10111111 00 11111111 00 after the bit-slip, which
is not correct, either.

Despite the time that I’ve spent poring over the
source code, I have not yet determined the cause, so
we’re left to work around it. Can we add support for
MAME, while keeping the existing support? With-
out duplicating everything? Let’s see about that.

We need to move a zero-bit beyond the slipped
region so that the hardware will read the same bits
that MAME does.

[1 1 10] 0 11111111 00 11111111 0x . . .
2 V−−−>−−−>−−−>−−−>−−−>−−−^

After moving the zero bit, we have
[1110]11111111 00 11111111 00 Realign-
ing that stream, we get 11101111 11110011

11111100 ..., which looks good. On disk, it ap-
pears as EF F3 FC.

Then we append our complete pattern without
any consideration for bit-slip. This stream is EF F3

FC EE E7 FC EE E7 FC EE EE FC.

The final step is to pad the sector as we
did previously. Using the aesthetic choice again,
we zero the running value and then fill the rest
of the sector with 96s. A quick lookup in
the nibble translation table shows us that the
needed value is EA, so our whole stream ap-
pears as D5 AA AD E7 E7 E7 EF F3 FC EE E7 FC

EE E7 FC EE EE FC EA 96 96 ... DE AA.

18

5.7 Success!

We have a truly universal nib sequence, which works
on hardware, which works on AppleWin, which
works on MAME (and which will still work when
the bug is fixed), and which defeats the E7 protec-
tion.

Here is our universal sequence in the form of a
disk sector:

03 00 03 02 02 02 00 03 03 01 02 02 00 02 02 00
2 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
4 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
6 00 00 00 00 00 00 01 00 01 01 03 00 00 01 02 02

03 00 00 00 03 00 00 00 00 00 00 00 00 00 00 00
8 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
10 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 01 00 01 02
12 01 02 01 00 03 00 01 02 01 02 01 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
14 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
16 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

This can be applied wherever the E7 se-
quence is the regular pattern. For other pat-
terns, such as those used by Thunder Mountain’s
“Dig Dug” (E7 EE EE EE E7 E7 EE E7 EE EE EE

E7 EE E7 EE EE), Sunburst’s “1-2-3 Sequence Me”
(BB F9 Fx), and MCE’s “The 4th R - Reason-
ing” (EB B6 EF 9A DB B7 ED F9 D7 BF BD A7 B3

FF B3 BA), just place the proper pattern after the
“EF F3 FC” sequence, pad the sector as you like,
and then fix the sector checksum.

For the record, the E7 stream is used in many
other titles (games or educational software), such
as Commando, Deathsword, Ikari Warriors, Impos-
sible Mission II, Karate Champ, Paperboy, Rambo

First Blood Part II (a pure text adventure!), Sum-
mer/Winter/World Games, The Ancient Art of War
[at Sea], Tetris, and Xevious AlgebraCVolumeC3Cv3x8|AliceCinCWonderland|AnimalCKingdom|BankCStreetCStorybook|Bannercatch|Batman|BumbleCPlotC3xH|CaliforniaCGames|ChampionshipCWrestling|ColorMe|Deathsword|Destroyer|DigCDugC(ThunderCMountainT|Dinosaurs|DiveCBomber|FractionCAction|GxIxCJoe|GalaxianC(ThunderCMountainT|GertrudewsCPuzzlesC3xH|GertrudewsCSecrets|GertrudewsCSecretsC3x-|HouseJaJFire|ImpossibleCMissionCII|JamesCBondCzz8CinCACViewCToCACKill|JumpingCMathCFlash|LxAxCCrackdown|MagicalCMyths|MathCShop|MathematicsCProblemCSolvingCSoftwareCLevelC3JHJ-|MathematicsCToday|MicrozineC3HJ3-J36J38J3N|MoptownCHotelC3xH|MoptownCHotelC3x-|MurderCbyCtheCDozen|NumberCBowling|PacJManC(ThunderCMountainT|Paperboy|PitstopCII|Quations|RaceCCarCwRithmetic|Racter|RadCWarrior|RamboCFirstCBloodCPartCII|RiddleCMagic|ScienceCVolumeCHCJCGeology|ScienceCVolumeC-|ScienceCVolumeC0CJCSpace|Spiderbot|StarCMazeC(ScottICForesmanCandCCompanyT|StreetCSportsCBasketball|StreetCSportsCSoccer|SuccessCwithCTyping|SuperPrint|SurveyCTaker|TenCLittleCRobots|Tetris|TheCAdventuresCofCSinbad|TheCAmericanCChallenge|TheCAncientCArtCofCWar|TheCHalleyCProject|TheCMist|TheCMovieCMonsterCGame|TheCNotableCPhantom|TheCPerfectCCollege|TheCPerfectCScore|TheCPlayroom|TheCSportingCNewsCBaseball|TheCWorldwsCGreatestCBaseballCGame|TinkwsCAdventure|Xevious

As far as we know, this technique first appeared
in 1983. It was used to protect the title Locksmith,
ironically a product for defeating copy-protection.

None of the disk copiers of the day could copy
E7 disks without a parameter unique to the target,
so duplicating these disks always required a bit of
expertise.

5.8 Final Words

Here is an interesting question: What if you don’t
have an entire sector available on the track that you
need?

Fortunately, this would be a concern only for a
protection which used the rest of the sector (and the
rest of the track) for meaningful data, which I have
not seen so far. In any case, the solution would be to
insert only the nibble sequence “EF F3 FC ... EE

EE FC” and to not pad the sector. This would yield
a freely-copyable disk in its original form. However,
we must discourage that idea with these words from
4am:

Never patch an original disk.

Don't reduce the number of original disks in the world.

they aren't making any more of them.
-4am

19

6 A Tourist’s Phrasebook for Reversing Embedded ARM
in the Dialect of the Cortex M Series

by Travis Goodspeed and Ryan Speers

Ahoy there, neighbor!
Welcome to another installment of our series of

quick-start guides for reverse engineering embedded
systems. Our goal here is to get you situated with
the architecture of smaller devices as quickly as pos-
sible, with a minimum of fuss and formality.

Those of you who have already worked with
ARM might find it to be a useful refresher, while
those of you new to the architecture will find that
it isn’t really as strange as you’ve been led to be-
lieve. If you’ve already reverse engineered binaries
for any platform, even x86 Windows applications,
you’ll soon feel right at home.

We’ve written this guide with STM32 devices for
specific examples, but with minor differences it ap-
plies well enough to the Cortex M series as a whole.
These devices generally have a megabyte or less of
Flash and at most a few hundred kilobytes of RAM.
By and large, they only run the Thumb2 instruc-
tion set, without support for the older AARCH32
instruction set. For larger ARM chips, such as those
used in smartphones and tablets, you might be bet-
ter served by a different introduction.

6.1 At a Glance

Common Models
STM32, EFM32

Architecture
32-bit registers
16-bit and 32-bit Thumb(2) instructions

Registers
R15: Program Counter
R14: Link Register
R13: Stack Pointer
R0 to R12: General Use

6.2 Basics of the Instruction Set

Back in the day, ARM used fixed-width 32-bit RISC
instructions. Like the creation of the world, this
was widely regarded as a mistake, and many an-
gry people wrote comments complaining that it was

a waste of space, and that RISC wouldn’t “change
everything.” These instructions were always 32-bit
word aligned, so the lowest two bits of the Program
Counter (R15) were always zero.

Larger ARM chips, such as those in an early
smartphone, support two instructions sets. If
the least significant bit of the program counter is
clear (0), then the 32-bit instruction set is used,
whereas if that bit is set (1), the chip will use a
16-bit instruction set called Thumb. Registers are
still 32 bits wide, but the instructions themselves are
only a half-word. They must be half-word aligned.

Because Thumb instructions have fewer bits to
spare, code in larger ARM machines will switch be-
tween ARM and Thumb as it is convenient. You
can see this in the least significant bit of a function
pointer, where an ARM function’s address will be
even, while a Thumb function’s address will be odd.

The Cortex M3 devices speak a slimmer dialect
than the big-iron ARM chips. This dialect drops the
32-bit wide instruction set entirely, supporting only
Thumb and Thumb2 instructions.9 Because of this,
all functions and all interrupt handlers are referred
to by odd addresses, which are actually the address
of the byte after the real starting address! If you
see a call to 0x08005615, that is really a call to the
Thumb code at 0x08005614.

6.3 Registers and Calling Convention

Arguments are passed to the child function from R0
to R3. R4 to R11 hold local variables, and the child
function must restore them before returning to the
parent function. Values are returned in R0 to R3,
and these registers are not preserved by the child.

Much like in PowerPC and very unlike x86, the
Link Register (R14, a.k.a. LR) holds the return ad-
dress. A leaf function, having no children, might
never write its return pointer to the stack. The
BL instruction automatically moves the old Program
Counter into the Link Register when calling a child,
so parent functions must manually save R14 before
calling children. The return instruction, BLR, func-
tions by moving R14 (LR) into R15 (PC).

9Thumb2 instructions run from Thumb mode. The only thing new about them is that they can be longer than 16 bits, so
your disassembler might be slightly confused about their starting position.

20

512-Mbyte

block 0

Code

512-Mbyte

block 1

SRAM

512-Mbyte

block 2

Peripherals

512-Mbyte

block 3

FSMC bank1

& bank2

512-Mbyte

block 4

FSMC bank3

& bank4

512-Mbyte

block 5
FSMC registers

512-Mbyte

block 6

Not used

512-Mbyte
block 7

Cortex-M4´s
internal

peripherals

0X2002 0000 - 0X3fff ffff

0X2001 c000 - 0X2001 ffff

0X2000 0000 - 0X2001 bfff

0X1fff c008 - 0X1fff ffff

0X1fff c000 - 0X1fff c007

0X1fff 7a10 - 0X1fff 7fff

0X1fff 0000 - 0X1fff 7a0f

0X1001 0000 - 0X1ffe ffff

0X1000 0000 - 0X1000 ffff

0X0810 0000 - 0X0fff ffff

0X0800 0000 - 0X080f ffff

0X0010 0000 - 0X07ff ffff

0X0000 0000 - 0X000f ffff

0X4000 0000

0X4000 7fff
0X4000 7800 - 0X4000 ffff
0X4001 0000

0X4001 5fff
0X4001 5800 - 0X4001 ffff
0X4002 0000

0X4007 7fff
0X4008 0000 - 0X4fff ffff
0X5000 0000

0X5006 0bff
0X5006 0c00 - 0X5fff ffff
0X6000 0000

0Xa000 0fff
0Xa000 1000 - 0Xdfff ffff

0Xe000 0000 - 0Xe00f ffff

0Xe010 0000 - 0Xffff ffffReserved

CORTEX-M4 internal peripherals

Reserved

Reserved

Reserved

Reserved

Reserved

APB1

APB2

AHB1

AHB2

AHB3

Reserved

Reserved

Option Bytes

System memory + OTP

Reserved

CCM data RAM

(64 KB data SRAM)

Reserved

Reserved

Flash

Aliased to Flash, system
memory or SRAM depending

on the BOOT pins

Reserved

SRAM (16 Kb aliased
by bit-handling)

SRAM (112 Kb aliased
by bit-handling)

E

W
SSW

SE

NW

N NE

pastor

cortex
arm
flash

interrupt
radare

0Xffff ffff

0Xc000 0000

0Xbfff ffff

0Xe000 0000

0Xdfff ffff

0Xa000 0000

0X9fff ffff

0X8000 0000

0X7fff ffff

0X6000 0000

0X5fff ffff

0X4000 0000

0X3fff ffff

0X2000 0000

0X1fff ffff

0X0000 0000

STM32F40xxx

MEMORY MAP
p
er

ip
he

ra
ls

FS
M

C

Figure 3 – STM32F40xxx Memory Map

21

6.4 Memory Map

Figure 3 shows the memory layout of the
STM32F405, a Cortex M4 device. Study this map
for a moment, before we go on to how to use it in
your adventure!

Because Cortex M devices have four gigabytes of
address space but hardly a megabyte of Flash, they
keep functionally different parts of memory at very
different addresses.

Code memory is officially the range from
0x00000000 to 0x1FFFFFFF, but in nearly all cases,
you’ll find that Flash is mapped to begin at 0x0800-
0000. When reverse engineering an application,
you’ll find that it’s either written here or a few
dozens of kilobytes later, to leave room for a boot-
loader.

SRAM is usually mapped to begin at 0x2000-

0000, so it’s safe to assume that any read or write
to an absolute address in this region is a global vari-
able, and also that the stack and heap fit somewhere
in this range. Unlike a desktop application, which
loads its initial globals directly into a .data seg-
ment, an embedded application must manually ini-
tialize its data variables, possibly by copying a large
chunk from Flash into SRAM.

Peripheral memory begins at 0x40000000. Both
because peripherals are most often referred to by an
explicit address, and because Flash comes with no
linking systems or system calls, reads and writes to
this region are a gold mine for a reverse engineer!

System control registers are at 0xE0000000.
These are used to do things like moving the inter-
rupt table or reading the chip’s model number.

6.5 Making Sense of Pointers

Let us teach you some nifty tricks about pointers in
Thumb machines.

Back when ARM was first designed, 32-bit fixed-
width instructions with 32-bit alignment were all the
rage, and all the cool kids (POWER, SPARC, Al-
pha) used them. Later on, when the Thumb in-
struction set was being designed, its designers chose
16-bit instructions that could be mapped back to
the same 32-bit core. The CPU would fetch a 32-bit
ARM instruction if the least-significant bit of the
program counter were even, and a 16-bit Thumb in-
struction if the program counter were odd.

But these Cortex chips generally ship just
Thumb and Thumb2, without backward compatibil-
ity to 32-bit ARM instructions. So the trick, which

you can try in the next section, is that data pointers
are always even and instruction (function) pointers
are always odd.

6.6 Making Sense of the Interrupt

Table

Let’s take a look at the interrupt table from the be-
ginning of a Cortex M firmware image. These are
32-bit little endian addresses, which are to be read
backwards.

0000000 30 14 00 20 21 41 00 08
2 39 57 00 08 3d 57 00 08

0000010 41 57 00 08 45 57 00 08
4 49 57 00 08 00 00 00 00

0000020 00 00 00 00 00 00 00 00
6 00 00 00 00 51 57 00 08

0000030 4d 57 00 08 00 00 00 00
8 55 57 00 08 59 57 00 08

0000040 . . .

Note that the first word, 0x20001430, is in the
SRAM region; this is because the first word of a Cor-
tex M interrupt table is the initialization value for
the Stack Pointer (R13). The second word, 0x0800-
4121, is the initialization value for the Program
Counter (R15), so we know the entry point of the
application is Thumb2 code starting at 0x08004120.

Except for some reserved (zeroed) words, the
handler addresses are all in Flash memory and rep-
resent the interrupt handler functions. We can look
up the meaning of each handler in the specific chip’s
programming guide, then chase the ones that are
most relevant. For example, if we are reverse engi-
neering a USB device, powered by an STM32F3xx,
the STM32F37xx reference manual tells us that the
interrupts at offsets 0x000000D8 and 0x0000001C

handle USB events. These might be good handlers
to reverse early in the process.

6.7 Loading into IDA Pro or Radare2

To load the application into IDA Pro or Radare2,
you generally need to know the loading point and
the locations of some other memories.

The loading point will be at or near 0x08000000,
depending upon whether a bootloader comes before
your image. If you are working from a JTAG dump,
just use the address the image came from. If you
are working from a .dfu (Device Firmware Update)
file, it will contain a loading address in its header
metadata.

22

When given a raw dump without a starting ad-
dress, disassemble the instructions and try to find
a loading address at which the interrupt handlers
line up. (The interrupt vector table is usually at
0x08000000 at boot, but it can be moved to a new
address by software.)

6.8 Making Sense of the Peripherals

The Cortex M3 contains two peripheral regions. At
0x40000000, you will find the most useful ones for
reverse engineering applications, such as UART and
USB controllers, General Purpose IO (GPIO), and
other devices. Unfortunately, these peripherals are
not generic to the Cortex M3 as an architecture;
rather, they are specific to each individual chip.

Supposing you are reverse engineering an appli-
cation for the STM32F3xx series, you would down-
load the Peripheral Support Library for that chip
from its manufacturer and eventually find yourself
reading stm32f30x.h. For other chips, there are
similar headers, each of which is written around C
structs for register groups and preprocessor defini-
tions for peripheral base addresses and offsets.

Suppose we know from reverse engineering a cir-
cuit board that USART2 is used by our target ap-
plication to send packets to a radio chip, and we
would like to search for all functions that use this
peripheral. Working backwards, we find the follow-
ing relevant lines in stm32f30x.h.

1 //Abbrev ia ted USART r e g i s t e r s t r u c t .
typedef struct{

3 __IO uint32_t CR1; //+0x00
__IO uint32_t CR2;

5 __IO uint32_t CR3;
__IO uint16_t BRR;

7 uint16_t RESERVED1;
__IO uint16_t GTPR;

9 uint16_t RESERVED2;
__IO uint32_t RTOR;

11 __IO uint16_t RQR;
uint16_t RESERVED3;

13 __IO uint32_t ISR ;
__IO uint32_t ICR ;

15 __IO uint16_t RDR; //+0x24 RX Data Reg
uint16_t RESERVED4;

17 __IO uint16_t TDR; //+0x28 TX Data Reg
uint16_t RESERVED5;

19 } USART_TypeDef ;

21 //USART lo ca t i on d e f i n i t i o n s .
#define USART2 \

23 ((USART_TypeDef ∗) USART2_BASE)

#define USART2_BASE \
25 (APB1PERIPH_BASE + 0x00004400)

#define APB1PERIPH_BASE \
27 PERIPH_BASE

#define PERIPH_BASE \
29 ((uint32_t) 0x40000000)

This means that USART2’s data structure is lo-
cated at 0x40004400. From the USART_TypeDef

structure, we know that data is received from US-
ART2 by reading 0x40004424 and written to US-
ART2 by writing to 0x40004428! Searching for
these addresses ought to easily find us the read and
write functions for that port.

6.9 Other Oddities

Please note that this guide has left out some features
unique to the STM32 series, and that each chip has
its own little quirks. You’ll find different memory
maps on each implementation, and anything that
looks confusing is likely worth spending more time
to understand.

For example, some ARM devices offer Core-
Coupled Memory (CCM), which is SRAM that’s
wired directly to the CPU’s internal data bus rather
than to the main memory bus of the chip. This
makes fetches lightning fast, but has the complica-
tions that the memory is unusable for DMA or code
fetches. Care for a non-executable stack, anyone?

Another quirk is that many devices map the
same physical memory to multiple virtual locations.
In some high-performance code, the use of both
cached and uncached memory can allow for more
efficient operation.

Additionally, address zero often contains a dupli-
cate of the boot memory, which is usually Flash but
might be executable SRAM. Presumably this was
done to allow for code that has compatible imme-
diate addresses when booting from either memory,
but PoC‖GTFO 10:8 describes a nifty little jailbreak
that relies on dumping the 48K recovery bootloader
of an STM32F405 chip out of Flash through a null-
pointer read.

– — — – — — — — – — –
We hope that you’ve enjoyed this friendly lit-

tle guide to the Cortex M3, and that you’ll keep it
handy when reverse engineering firmware from that
platform.

23

7 A Ghetto Implementation of CFI on x86

by Jeffrey Crowell

In 2005, M. Abadi and his gang presented a nifty
trick to prevent control flow hijacking, called Control
Flow Integrity. CFI is, essentially, a security policy
that forces the software to follow a predetermined
control flow graph (CFG), drastically restricting the
available gadgets for return-oriented programming
and other nifty exploit tricks.

Unfortunately, the current implementations in
both Microsoft’s Visual C++ and LLVM’s clang
compilers require source to be compiled with special
flags to add CFG checking. This is sufficient when
new software is created with the option of added se-
curity flags, but we do not always have such luxury.
When dealing with third party binaries, or legacy
applications that do not compile with modern com-
pilers, it is not possible to insert these compile-time
protections.

Luckily, we can combine static analysis with bi-
nary patching to add an equivalent level of protec-
tion to our binaries. In this article, I explain the
theory of CFI, with specific examples for patching
x86 32-bit ELF binaries—without the source code.

CFI is a way of enforcing that the intended con-
trol flow graph is not broken, that code always takes
intended paths. In its simplest applications, we
check that functions are always called by their in-
tended parents. It sounds simple in theory, but in
application it can get gnarly. For example, consider:

1 int a () { return 0 ; }
int b () { return a () ; }

3 int c () { return a () + b () + 1 ; }

For the above code, our pseudo-CFI might look
like the following, where called_by_x checks the
return address.

1 int a () {
i f (! called_by_b && ! called_by_c) {

3 e x i t () ;
}

5 return 0 ;
}

7 int b () {
i f (! called_by_c) {

9 e x i t () ;
}

11 return a () ;
}

13 int c () { return a () + b () + 1 ; }

Of course, this sounds quite easy, so let’s dig in
a bit further. Here is a very simple example pro-
gram to illustrate ROP, which we will be able to
effectively kill with our ghetto trick.

1 #include <s t r i n g . h>

3 void smashme(char∗ blah) {
char smash [1 6] ;

5 s t r cpy (smash , blah) ;
}

7
int main (int argc , char∗∗ argv) {

9 i f (argc > 1) {
smashme(argv [1]) ;

11 }
}

In x86, the stack has a layout like the following.

Local Variables
Saved ebp

Return Pointer
Parameters

. . .

By providing enough characters to smashme, we
can overwrite the return pointer. Assume for now,
that we know where we are allowed to return to.
We can then provide a whitelist and know where it
is safe to return to in keeping the control flow graph
of the program valid.

Figure 4 shows the disassembly of smashme()

and main(), having been compiled by GCC.

Great. Using our whitelist, we know that
smashme should only return to 0x08048456, because
it is the next instruction after the ret. In x86, ret
is equivalent to something like the following. (This
is not safe for multi-threaded operations but we can
ignore that for now.)

1 pop ecx ; puts the re turn address to ecx
jmp ecx ; jumps to the re turn address

24

[0 x08048320]> pdf@sym.smashme
2 / (fcn) sym.smashme 26

| ; arg i n t arg_2 @ ebp+0x8
4 | ; var i n t loca l_6 @ ebp−0x18

| ; CALL XREF from 0x08048451 (sym.smashme)
6 | 0x0804841d 55 push ebp

| 0 x0804841e 89 e5 mov ebp , esp
8 | 0x08048420 83 ec28 sub esp , 0x28

| 0x08048423 8b4508 mov eax , dword [ebp+arg_2] ; [0 x8 :4]=0
10 | 0x08048426 89442404 mov dword [esp + 4] , eax

| 0x0804842a 8d45e8 lea eax , [ebp−loca l_6]
12 | 0x0804842d 890424 mov dword [esp] , eax

| 0x08048430 e 8 b b f e f f f f ca l l sym. imp.strcpy
14 | 0x08048435 c9 leave

\ 0x08048436 c3 ret
16 [0 x08048320]> pdf@sym.main

/ (f cn) sym.main 33
18 | ; arg i n t arg_0_1 @ ebp+0x1

| ; arg i n t arg_3 @ ebp+0xc
20 | ; DATA XREF from 0x08048337 (sym.main)

| ;−− main :
22 | 0x08048437 55 push ebp

| 0x08048438 89 e5 mov ebp , esp
24 | 0x0804843a 83 e4 f0 and esp , 0 x f f f f f f f 0

| 0x0804843d 83 ec10 sub esp , 0x10
26 | 0x08048440 837d0801 cmp dword [ebp + 8] , 1 ; [0 x1 :4]=0 x1464c45

| ,=< 0x08048444 7e10 j l e 0x8048456
28 | | 0x08048446 8b450c mov eax , dword [ebp+arg_3] ; [0 xc :4]=0

| | 0x08048449 83 c004 add eax , 4
30 | | 0 x0804844c 8b00 mov eax , dword [eax]

| | 0 x0804844e 890424 mov dword [esp] , eax
32 | | 0x08048451 e 8 c 7 f f f f f f ca l l sym.smashme

| | ; JMP XREF from 0x08048444 (sym.main)
34 | ‘−> 0x08048456 c9 leave

\ 0x08048457 c3 ret

Figure 4 – Disassembly of main() and smashme().

25

Cool. We can just add a check here. Perhaps
something like this?

pop ecx ; puts the re turn address to ecx
2 cmp ecx , 0x08048456 ; check t ha t we return to

the r i g h t p lace
jne 0x41414141 ; crash

4 jmp ecx ; e f f e c t i v e l y re turn

Now just replace our ret instruction with the
check. ret in x86 is simply this:

$ rasm2 −a x86 −b32 " r e t "
2 c3

where our code is this:

$ rasm2 −a x86 −b32 "pop ecx ; cmp ecx , 0
x08048456 ; jne 0x41414141 ; jmp ecx"

2 5981 f9568404080 f8534414141 f f e1

Sadly, this will not work for several reasons. The
most glaring problem is that ret is only one byte,
whereas our fancy checker is 15 bytes. For more
complicated programs, our checker could be even
larger! Thus, we cannot simply replace the ret

with our code, as it will overwrite some code after
it—in fact, it would overwritemain. We’ll need to
do some digging and replace our lengthy code with
some relocated parasite, symbiont, code cave, hook,
or detour—or whatever you like to call it!

Nowadays there aren’t many places to put our
code. Before x86 got its no-execute (NX) MMU bit,
it’d be easy to just write our code into a section like
.data, but marking this as +x is now a huge secu-
rity hole, as it will then be rwx, giving attackers a
great place for putting shellcode. The .text sec-
tion, where the main code usually goes, is marked
r-x, but there’s rarely slack space enough in this
section for our code.

Luckily, it’s possible to add or resize ELF sec-
tions, and there’re various tools to do it, such as
Elfsh, ERESI, etc. The challenge is rewriting the
appropriate pointers to other sections; a dedicated
tool for this will be released soon. Now we can add
a new section that is marked as r-x, replace our ret
with a jump to our new section—and we’re ready to
take off!

Well, wheels aren’t up yet. As mentioned before,
ret is c3, but absolute jumps are five bytes.

$ rasm2 −a x86 −b32 "jmp 0x41414141"
2 e93c414141

So what is left to do? Well, we can simply rewind
to the first complete opcode five bytes before the
ret, and add a jump, then relocate the remaining
opcodes. In this case, we could do something like
this:

smashme :
2 push ebp

mov ebp , esp
4 sub esp , 0x28

mov eax , dword [ebp + 8]
6 mov dword [esp + 4] , eax

lea eax , [ebp − 0x18]
8 mov dword [esp] , eax

jmp pa r a s i t e
10

pa r a s i t e :
12 ca l l sym. imp.strcpy

leave
14 pop ecx

cmp ecx , 0x08048456
16 jne 0x41414141

jmp ecx

Here, parasite is mapped someplace else in
memory, such as our new section.

With this technique, we’ll still to have to pass
on protecting a few kinds of function epilogues, such
as where a target of a jump is within the last five
bytes. Nevertheless, we’ve covered quite a lot of the
intended CFG.

This approach works great on platforms like
ARM and MIPS, where all instructions are constant-
length. If we’re willing to install a signal handler,
we can do better on x86 and amd64, but we’re ap-
proaching a dangerous situation dealing with sig-
nals in a generic patching method, so I’ll leave you
here for now. The code for applying the explained
patches is all open source and will soon be extended
to use emulation to compute relative calls.

Thanks for reading!
Jeff

26

27

8 A Tourist’s Phrasebook for Reversing MSP430

by Ryan Speers and Travis Goodspeed

Howdy, y’all!
Welcome to another installment of our series of

quick-start guides for reverse engineering embedded
systems. Our goal here is to get you situated with
the MSP430 architecture as quickly as possible, with
a minimum of fuss and formality.

Those of you who have already used an MSP430
might find this to be a useful reference, while those
of you new to the architecture will find that it isn’t
really all that strange. If you’ve already reverse engi-
neered binaries for any platform, even x86, we hope
that you’ll soon feel right at home.

8.1 The Landscape

Architecture
Von Neumann
16-bit words

Registers
R0: Program Counter
R1: Stack Pointer
R2: Status Register
R3: Constant Generator
R4-R15: General Use

Address Space
16-bit (MSP430)
20-bit (MSP430X, X2)

8.2 Memory Map

Unlike other embedded platforms, which like to put
the interrupt vector table (IVT) at the beginning
of memory, the MSP430 places it at the very end
of the 16-bit address space, in Flash. (On smaller
chips, this is the very end of Flash.)

Early on, Low RAM at 0x0200 would be the
only RAM location, but as that region proved too
small, a High RAM area was created at 0x1100. For
firmware compatibility reasons, the Low RAM area
is mapped on top of the High RAM area.

Note that Flash grows down from the top of
memory, while the RAM grows up. On chips with
a 20-bit address space, an Extended Flash region
sometimes grows upward from 0x10000.

Additionally, there is an Info Flash area at
0x1000. While there is nothing to stop an engineer
from using this for code, the region is generally used
for configuration settings. In many devices, chips
arrive with this region pre-programmed to contain
calibration settings for the internal clock.

In most devices, the BSL ROM at 0x0C00 con-
tains a serial bootloader that allows the chip to be
reprogrammed even after the JTAG fuse has been
blown, and if you know the contents of the last 32
bytes of Flash—the Interrupt Vector Table—you can
also read out the contents of memory.

8.3 Loading into a Disassembler

Back in the old days, reverse engineering MSP430
code meant using GNU objdump and annotating on
pen and paper. Some folks would wrap these tools in
Perl, or fill paper notebooks with cross-referencing,
but thankfully that’s no longer necessary.

Nowadays, IDA Pro has excellent support for the
platform. If you have a legit license, just open the
Intel Hex image of your target and specify MSP430
as the architecture. Memory locations can be had
from the appropriate datasheets.

Radare2’s MSP430 support is a bit less mature,
and you should make sure to sanity check the dis-
assembly wherever it looks suspect. Luckily, the
Radare2 developers are frighteningly quick about
fixing bugs, so both bugs that bothered us in the
writing this article will likely be patched by the time
you read this. For best results, always run Radare2
built from the latest Git repository,10—and rebuild
it often.

One last tool, which is fast becoming obsolete
with Radare2’s support, is the MSPGCC project’s
single-line assembler.11 It is particularly handy,
though, when sanity-checking your own implemen-
tation of an assembler or disassembler.

There are no known decompilers for the MSP430,
but with small code sizes and rather legible assembly
we don’t expect one to be necessary.

10git clone https://github.com/radare/radare2
11http://mspgcc.sourceforge.net/assemble.html

28

Start End Size Use
0x0000 0x000F 16 Interrupt Control Registers
0x0010 0x00FF 240 8-bit Peripherals
0x0100 0x01FF 255 16-bit Peripherals
0x0200 0x09FF Low RAM (Mirrored at 0x1100)
0x0C00 0x0FFF 1024 BootStrap Loader (BSL ROM)
0x1000 0x10FF 256 Info Flash
0x1100 High RAM

0xFFFF Flash
0x10000 Extended Flash

Table 1 – MSP430 and MSP430X Address Space

8.4 Basics of the Instruction Set

The language is relatively simple, but there are a
few dialects that the locals speak. There are 27 ac-
tion words (instructions), and then some additional
emulated instructions which are assembled to one
of the 27. Most of these 27 instructions have two
forms—.B when they are working on an 8-bit byte,
or .W if they want to tackle a 16-bit word. If someone
tells you something and doesn’t specify it, you can
assume it’s a word. If you’re doing a byte operation
in a register, be warned that the most-significant
byte is cleared.

The three main types of core words are single-
operand arithmetic, two-operand arithmetic, and
jumps.

Our simple single-operands are RRC (1-bit ro-
tate right and carry), SWPB (swap the bytes of the
word), RRA (1-bit rotate right as arithmetic), SXT
(sign-extend a byte into a word), PUSH (onto the
stack), CALL (a subroutine, by pushing PC and
then moving the new address to PC), and RETI
(return from interrupt, restoring the Status Regis-
ter SR and PC from stack).

Although these are all simple folk, they can, of
course, be addressed in many different ways. If our
register is n, then we see a few major types of ad-
dressing, all based off of the ‘As’ (for source) and
‘Ad’ (limited options for destination) fields:

Rn Operate on the contents of register n.

@Rn Operate on what is in memory at the address
held in Rn.

@Rn+ Same as above, then increment the register
by 1 or 2.12

x(Rn) Operate on what is in memory at the ad-
dress Rn + x.

Wait, we just told you about an ‘x’. Where did
that come from?! In this case, it’s an extension word,
where the next 16-bit word after the extension de-
fines x. In other words, it’s an index off the base
address held in Rn.

If the register is r0 (PC, the program counter),
r2 (SR, the status register), or r3 (the constant gen-
erator), special cases apply. A common special case
is to give you a constant, either -1, 0, 1, 2, 4, or 8.

Now we tackle two-operand arithmetic opera-
tions, most of which you should recognize from any
other instruction set. The mov, add, addc (add with
carry), sub, and subc instructions are all as you’d
expect. cmp pretends to subtract the source from
the destination to set status flags. dadd does a dec-
imal addition with carry. xor and and are bitwise
operations as usual. We have three that are a little
unique: bis (logical OR), bic (dest = dest AND
src), and bit (test bits of src AND dest).

Even with these instructions, though, we’re still
missing many favorite mnemonics that you’ll see in
disassembly. These are emulated instructions, actu-
ally implemented using other instruction(s).

For example, br dst (branch) is an emulated
instruction. There is no branch opcode, but in-
stead the br instructions are assembled as mov dst,

pc. Similarly, pop dst is really mov @SP+, dst, and
ret is really mov @sp+, pc. If these mappings make
sense, you’re all set to continue your travels!

Thus, when we need to get around this land of
MSP430, we look not to the many jump types of
x86, but instead to simpler patterns, where the only
kind of jump operands are relative, and that’s that.

12Here are the rules: Increment by two if registers r0 or r1, or if r4-r15 are used with a .W (2-byte) operand. Increment by
1 if r4 to r15 are used with a .B operand.

29

So jmp, the instruction says, but where to? The
first three bits (001) mean jump, the next three
specify the conditional, and the remaining ten are
a signed offset. To get there, the ten bits are multi-
plied by two (left shifted) and then are added to the
program counter, r0. Why multiply by two? Well,
we have 16-bit word alignment, in the MSP430 land,
unlike with those pesky x86 instructions you might
be thinking of. Ordnung muß sein!

You might have noticed in your disassembly that
even though we told you this was a fixed-width in-
struction set, some instructions are longer than one
16-bit word! One way this can happen is when us-
ing immediate values, which—much like those of the
glorious PDP-11 of old—are implemented by derefer-
encing and incrementing the program counter. This
way, the CPU will skip over the immediate value in
its code fetch path just as it’s fetching that same
value as data.

And, finally, there are prefix instructions that
have been added in MSP430X, the 20-bit extension
of the MSP430. These prefix instructions go before
the normal instruction, and you’ll most commonly
see them setting the upper four bits of the pointer
in a 20-bit function call.

8.5 What’s a Function, Anyways?

In x86 assembly, we’re used to looking for function
preambles to pick out the functions—but what do
we look for in MSP430 code? We’ve already dis-
cussed finding the entry point of the program and
those of other ISRs by looking at the vectors in the
IVT. What about other functions?

In MSP430, all functions that are not ISRs will
end with a RET instruction—which, as you recall, is
actually a MOV @SP+, PC.

Compilers vary greatly in the calling
conventions—as there is actually no fixed ABI. Usu-
ally, arguments get passed in r12, r13, r14, and
r15. This, however, is by no means a requirement.
MSP430 GCC uses r15 for the first parameter and
for most return value types, and r14, r13, and
r12 for the other parameters. Texas Instruments’
Code Composer and the IAR compiler (after EW430
4.10A release) use r12, r13, r14, and r15 and return
in r12.

We recommend using an additional heuristic in-
stead of looking for a function preamble format. In

this heuristic, we assume that indirect calls are rare,
and look for br #addr and call #addr instructions.
Both of these consist of two 16-bit words, and what-
ever the #addr we extract from that second word,
there’s a good chance that it’s the start of a func-
tion.

Using this logic, you should be able to find func-
tions even in stripped images disassembled with
msp430-objdump. A short script, or a good disas-
sembler, should help automate the marking of these
functions.

8.6 Making Sense of Interrupts

As with your (other) favorite microcontroller, our
exploration of the code can be preempted by an in-
terrupt.

If you don’t like these getting in the way of
your travels, they can be globally or individually
disabled—well, except for the non-maskable inter-
rupts (NMI).13

The MSP430 handles any interrupts set in prior-
ity order, and goes through the interrupt vector ta-
ble to find the right interrupt service routine’s (ISR)
starting address. It hides away the current PC and
SR on the stack, and runs the ISR. The ISR then
returns, and normal execution continues.

If one thing is for certain, it’s that 0xFFFE is the
system’s reset ISR address (used on power-up, exter-
nal reset, etc.), and that it has the highest priority.

If you have an elf32-msp430 formatted dump,14

use msp430-objdump dump.msp430 -DS to get dis-
assembly. Then locate the interrupt table at the end
of memory:

0000 f f c 0 <. sec2 >:
f f c 0 : 26 32 jn $−946 ; abs 0 x f c0e
. . .
f f f c : 26 32 jn $−946 ; abs 0 xfc4a
f f f e : 00 31 jn $+514 ; abs 0x200

We look at 0xFFFE for the reset interrupt ad-
dress, which is 0x3100 in this image. That’s our
entry point into the program, and you can see how
it nicely lines up in the disassembly:

00003100 <. sec1 >:
3100 : 31 40 00 31 mov #12544 , r1
3104 : 15 42 20 01 mov &0x0120 , r5
3108 : 75 f3 and . b #−1, r5

13Global disable is done by clearing the ‘GIE’ bit of the status register, r2.
14If not, use a command like msp430-objcopy -I ihex -O elf32-msp430 dump.hex dump.msp430 to convert into one.

30

Maybe we want to look at some specific function-
ality that is triggered by an interrupt, for example
incoming serial data. Looking in the MSP430F1611
data sheet, we find that USART1 receive is a mask-
able interrupt at 0xFFE6. If we look at the notated
IVT in an example program (e.g., TinyOS’s Printf
program compiled for TelosB), we see addresses (in
little endian) as shown here:

0000 f f e 0 <__ivtbl_16>:
f f e 0 : 52 44 dac/dma
f f e 2 : 52 44 i /o p2
f f e 4 : 56 56 usar t 1 tx
f f e 6 : d0 55 usar t 1 rx
f f e 8 : 52 44 i /o p1
f f e a : 94 4 f t imer a3
f f e c : 76 4 f t imer a3
f f e e : 52 44 adc12
f f f 0 : 52 44 usar t 0 tx
f f f 2 : 52 44 usar t 0 rx
f f f 4 : 52 44 watchdog t imer
f f f 6 : 52 44 compartor a
f f f 8 : d8 4 f t imer b7
f f f a : ba 4 f t imer b7
f f f c : 52 44 nmi/ e t c
f f f e : 00 40 r e s e t

We note that 0x4452 is used often. A quick look
at this address shows that it is an empty IVT not-
ing unused interrupts. Since we’re interested in the
USART1 receive path, we follow 0x55d0 and see a
large function that in turn calls another function—
both nicely annotated, as we were working from an
image with debug symbols:

000055d0 <sig_UART1RX_VECTOR>:
. . .

563a : b0 12 98 46 c a l l #0x4698
. . .

00004698 <SerialP__rx_state_machine >:
. . .

This technique of looking up your IVT entries
and then working backwards to reverse engineer any
handlers that correspond to the functionality you
are interested in can help you avoid getting lost in
reversing unimportant pieces of the code.

8.7 Sorting out Peripherals

If we’re reversing some firmware, hopefully we have
a target—often this can be data lines going to a radio
or some peripheral that carry sensitive data.

Some peripherals are dealt with via interrupts,
as shown above, but some are also either partially
or totally handled via touching memory defined by
the peripheral file map.

In particular, as an alternative to using inter-
rupts, a program could simply poll for incoming data
or a change in a pin’s state. Likewise, setting up
configurations for items such as the USART discussed
above is done in the peripheral file map.

15Page 23 of http://www.ti.com/lit/ds/symlink/msp430f1611.pdf

31

Let us take the same file we used above, and
look in the MSP430F1611 guide for the USART1 in
the peripheral file map.15 Here we see the registers
in the range from 0x0078 to 0x007F. Let us search
for a few of these in the image to demonstrate the
applicability of this technique.

First, we look for 0x0078 (USART control),
0x0079 (transmit control), and 0x007A (receive con-
trol). We find them all together in a function that
is responsible for configuring the USART resource.
A reader referencing the documentation will see the
other control registers also updated:

4 e8e <Msp430Uart . . . Conf igure . . . > :
. . .
4eb4 : c2 4e 78 00 mov . b r14 , &0x0078
4eb8 : d2 42 04 11 mov . b &0x1104 ,&0x0079
4ebc : 79 00
4ebe : d2 42 05 11 mov . b &0x1105 ,&0x007a
4 ec2 : 7a 00
4 ec4 : 1e 42 00 11 mov &0x1100 , r14
4 ec8 : c2 4e 7c 00 mov . b r14 , &0x007c
4 ecc : 8e 10 swpb r14
4 ece : 4e 4e mov . b r14 , r14
4ed0 : c2 4e 7d 00 mov . b r14 , &0x007d
4ed4 : d2 42 02 11 mov . b &0x1102 ,&0x007b
. . .

Whereas this approach can help you understand
the settings to better sniff the serial bus physically,

often you’d rather want to understand the actual
data being written out. For this, we look for the
peripheral holding the transmit buffer pointer—in
our case at 0x007F, according to the chip documen-
tation. Searching for this in the disassembly leads
us to a few interesting functions. Firstly, there’s one
that disables the UART, which fills this address with
null bytes. This helps us confirm we’re looking at
the right address. We also see this address written
to in the interrupt handler that we located in the
previous section—and in a large function that ends
up being a form of printf for writing out to this
serial line.

As you can see, working backwards from the ad-
dresses located in the peripheral file map can help
you quickly find functions of interest.

– — — – — — — — – — –

This guide is neither complete nor perfectly ac-
curate. We told a few lies-to-children as all teach-
ers do, and we omitted a dozen nifty examples that
would’ve fit. Still, we hope that this will whet your
appetite for working with the MSP430 architecture,
and that, when you begin to work on the ’430s, you
can get your bearings quickly, jumping into the fun
part of the journey with less hassle.

Also, for more MSP430 exploitation tricks, check
out PoC‖GTFO 2:5!

32

9 This HTML page is also a PDF
which is also a ZIP

which is also a Ruby script

which is an HTTP quine; or,

The Treachery of Files

by Evan Sultanik
from a concept independently conceived by Ange Albertini
and with great technical assistance from Philippe Teuwen

Please rise and open your hymnal for the recitation of PoC‖GTFO 7:6.

“A file has no intrinsic meaning. The meaning of a file—its type, its validity, its contents—can be
different for each parser or interpreter.

”
You may be seated.

In the spirit of самиздат and the license of this publication, we thought it might be nifty to aid its
promulgation by enabling the PDF to mirror itself. That’s right, this PDF is an HTTP quine: it is a web
server that serves copies of itself.

$ ruby pocorgtfo11.pdf &

Listening for connections on port 8080.

To listen on a different port,

re-run with the desired port as a command-line argument.

$ curl -s http://localhost:8080/pocorgtfo11.pdf | diff -s - pocorgtfo11.pdf

A neighbor at 127.0.0.1 is requesting /pocorgtfo11.pdf

Files - and pocorgtfo11.pdf are identical

Utilisation de la canne. — 1. Canne-filet à papillons. — 2. Canne à toiser les chevaux. —
3. Canne-parapluie. — 4. Canne musicale. — 5. Ceci n’est pas une pipe.

33

This polyglot once again exploits the fact that
PDF readers ignore everything before the first in-
stance of “%PDF”. Coupled with Ruby’s __END__

token—which effectively halts interpretation—and
its __FILE__ token—which resolves to the path of
the file being interpreted—it’s actually quite easy to
make an HTTP quine by prepending the PDF with
the following:

r e qu i r e ’ socke t ’
2 s e r v e r = TCPServer . new(’ ’ , 8080)

loop do
4 socket = s e r v e r . accept

r eque s t = socket . g e t s
6 re sponse = F i l e . open (__FILE__) . read

socke t . p r i n t "HTTP/1 .1 200 OK\ r \n" +
8 "Content−Type : app l i c a t i on /

pdf \ r \n" +
"Content−Length : #{response .

by t e s i z e }\ r \n" +
10 "Connection : c l o s e \ r \n"

socke t . p r i n t "\ r \n"
12 socket . p r i n t re sponse

socke t . c l o s e
14 end

__END__

But why stop there? Ruby makes all of the bytes
in the script that occur after the __END__ token
available in the special “DATA” object. Therefore,
we can add additional content between __END__ and
%PDF that the script can serve.

1 r e qu i r e ’ socke t ’
s e r v e r = TCPServer . new(’ ’ , 8080)

3 html = DATA. read () . s p l i t (/<\/html>/) [0]+ "</
html>\n"

loop do
5 socket = s e r v e r . accept

i f socke t . g e t s . s p l i t (’ ’) [1] .
downcase . end_with? " . pdf " then

7 c = " app l i c a t i o n /pdf "
d = F i l e . open (__FILE__) . read

9 n = F i l e . s i z e (__FILE__)
else

11 c = " text /html"
d = html

13 n = html . l ength
end

15 socket . p r i n t "HTTP/1 .1 200 OK\ r \
nContent−Type : #{c}\ r \nContent−Length :
#{n}\ r \nConnection : c l o s e \ r \n\ r \n"+d

socket . c l o s e
17 end

__END__
19 <html>

<head>
21 <t i t l e >An HTTP Quine PoC</t i t l e >

</head>
23 <body>

<a hr e f=" pocorgt fo11 . pdf ">Download
pocorgt fo11 . pdf !

25 </body>
</html>

Any HTTP request with a URL that ends with .pdf

will result in a copy of the PDF; anything else will
result in the HTML index parsed from DATA.

Since the data between __END__ and %PDF. . . is
pure HTML already, it would be a shame not to
make this file a pure HTML polyglot, too (similar
to PoC‖GTFO 0x07). Doing so is relatively simple
by wrapping PDF in HTML comments:

INSERT RUBY WEB SERVER HERE
2 __END__

<html>
4 . . .

</html>
6 <!−−

INSERT RAW PDF HERE
8 −−>

This is valid Ruby, since Ruby does not interpret
anything after the __END__. The PDF does not af-
fect the validity of the HTML since it is commented.
There will be trouble if the byte sequence “-->” (2D
2D 3E) occurs anywhere within the PDF, but this is
very unlikely and has proven not to be a problem.

Wrapping the Ruby webserver code in an HTML
comment would have been ideal, and does in fact
work for most PDF viewers. However, the pres-
ence of an HTML opening comment before the %PDF
causes Adobe’s parser to classify the file as HTML
and therefore refuse to open it.

Unfortunately, some web browsers interpret the
Ruby code as having an implied “<html>” preceding
it, adding all of that text to the DOM. This is reme-
died with Javascript in the HTML that sanitizes the
DOM if necessary.

As has become the norm, this PDF is also a
valid ZIP. This feat does not affect the Ruby/HTML
portion since the ZIP is embedded later in the file
as an object within the PDF (cf. PoC‖GTFO 1:5).
This presents an additional opportunity for the web-
server: if the script can unzip itself, then it can also
serve all of the contents of the ZIP. Unfortunately,
Ruby does not have a ZIP decompression facility
in its standard library. Therefore, the webserver
calls the unzip utility with the “-l” option, pars-
ing the output to determine the names and sizes
of the constituent files. Then, a call to unzip with
“-p” writes raw decompressed contents to STDOUT,
which the web server splits apart and stores in mem-
ory. Any HTTP request with a URL that matches a

34

file path within the ZIP is served that decompressed
file. This allows us to have images like a favicon

in the HTML. In the event that the PDF is inter-
preted as raw HTML—i.e., it was not served from
the Ruby script—a Javascript function conveniently
hides all of the ZIP access portions.

With all of this feature bloat, the Ruby/HTML
code that is prepended before the PDF started get-
ting quite large. Unfortunately, some PDF read-
ers like PDFium16 (the default PDF viewer shipped
with Chrom(e|ium)) fail unless they find “%PDF”
within the first 1024 characters. Therefore, the fi-
nal trick in this polyglot is to exploit Ruby’s mul-
tiline comment syntax (which, like the __END__ to-
ken, owes itself to Ruby’s Perl heritage). This allows
us to start the PDF header early, within a com-
ment that will not be interpreted. Within that PDF
header we open a dummy object stream that will
contain the remainder of the Ruby script and the
following HTML code before the start of the “real”
PDF.

r e qu i r e ’ socke t ’
2 =begin

%PDF−1.5
4 9999 0 obj

<<
6 /Length INSERT_#

_REMAINING_RUBY_AND_HTML_BYTES_HERE
>>

8 stream
=end

10 INSERT REMAINING RUBY CODE HERE
__END__

12 INSERT HTML HERE
<!−−

14 endstream
endobj

16 INSERT RAW PDF HERE WITH LEADING %. . . HEADER
REMOVED

−−>

Figure 5 describes the anatomy of the polyglot,
as interpreted in each file format.

16https://pdfium.googlesource.com/pdfium/

35

PDF Header

9999 0 obj
<<

/Length ?

>>

stream

=begin

=end

Multiline
Comment

require statements

Ruby Webserver

Parses the HTML

from DATA and calls

unzip on itself to

extract the ZIP con-

tent

__END__

Text occurring be-

fore <html>. Some

browsers will add

this to the DOM,

ignoring the fol-

lowing <html> and

<head>.

<!--

endstream

endobj

PDF Content

Replace ? with

the number of
bytes here

(i.e., between
stream and
endstream)

obj/stream

ZIP Content

as usual

(cf. PoC‖GTFO 1:5

and 9:12)

Central Directory

Archive Comment

endstream/endobj

PDF Footer

-->

Everything after
__END__ is

accessible from
Ruby’s special
DATA object

Ruby HTML PDF ZIP

HTML

Javascript to
remove
everything
between
“require. . . ” and
“__END__”
from the DOM, if
necessary

Figure 5 – Anatomy of the Ruby/HTML/PDF/ZIP polyglot. Green portions contain the main content of

their respective filetypes. White portions are for context and to illustrate modifications necessary to make

the polyglot work. Gray portions are not interpreted by their respective filetypes.

36

37

10 In Memoriam: Ben “bushing” Byer

by fail0verflow

Ben Byer
1980–2016

We are deeply saddened by the news that our member, colleague, and friend Ben
“bushing” Byer passed away of natural causes on Monday, February 8th.

Many of you knew him as one of the public faces of our group, fail0verflow, and
before that, Team Twiizers and the iPhone Dev Team.

Outspoken but never confrontational, he was proof that even in the competitive
and often aggressive hacking scene, there is a place for both a sharp mind and a kind
heart.

To us he was, of course, much more. He brought us together, as a group and in
spirit. Without him, we as a team would not exist. He was a mentor to many, and
an inspiration to us all.

Yet above anything, he was our friend. He will be dearly missed.
Our thoughts go out to his wife and family.
Keep hacking. It’s what bushing would have wanted.

38

39

11 Tithe us your Alms of 0day!

by Pastor Manul Laphroaig,
Unlicensed Proselytizer

International Church of the Weird Machines

Howdy, neighbor!
A man came to me, and he said, “Forgive me,

Preacher, for I have sinned. I play piano in a
brothel.”

I laughed, “That ain’t no sin, neighbor. Folks
need their music. Go now in peace.”

But the man was worried, he said, “No, Preacher,
I’ve really sinned. I need your forgiveness.”

So I laughed again, “Go now, you are forgiven!
Stop wasting my time.”

“But Preacher, I teach children to use PHP!”
“Why would you lie to me about your profession

like that?”
“Oh, you try confessing an occupation like that!”
“I’m glad I don’t have to,” I said while finishing

my drink, “’cause until today I didn’t believe there
was any fate I feared more than hell.”

Do this: write an email telling our editors how
to do reproduce ONE clever, technical trick from
your research. If you are uncertain of your English,
we’ll happily translate from French, Russian, South-
ern Appalachian, and German. If you don’t speak
those languages, we’ll draft a translator from those
poor sods who owe us favors.

Like an email, keep it short. Like an email, you
should assume that we already know more than a
bit about hacking, and that we’ll be insulted or—
WORSE!—that we’ll be bored if you include a long
tutorial where a quick reminder would do.

Just use 7-bit ASCII if your language doesn’t
require funny letters, as whenever we receive some-
thing typeset in OpenOffice, we briefly mistake it
for a ransom note. Don’t try to make it thorough
or broad. Don’t use bullet-points, as this isn’t a
damned Powerpoint deck. Keep your code samples
short and sweet; we can leave the long-form code as
an attachment. Do not send us LATEX; it’s our job
to do the typesetting!

Do pick one quick, clever trick and explain it in
a few pages. Teach me how to write a memory-
corruption exploit—not just shellcode!–that triggers
the same bug without profiling on MIPS, PowerPC,
x86, and AMD64. Show me how to write a 64-
bit DOS extender, or how to extract firmware from
locked regions on an MSP432’s funky flash protec-
tion.

Don’t tell me that it’s possible; rather, teach me
how to do it myself with the absolute minimum of
formality and bullshit.

Like an email, we expect informal (or faux-
biblical) language and hand-sketched diagrams.
Write it in a single sitting, and leave any editing
for your poor preacherman to do over a bottle of
fine scotch. Send this to pastor@phrack org and
hope that the neighborly Phrack folks—praise be to
them!—aren’t man-in-the-middling our submission
process.

Yours in PoC and Pwnage,
Pastor Manul Laphroaig, D.D.

40

