
PASTOR MANUL LAPHROAIG’s
INTERNATIONAL JOURNAL OF

PoC ‖ GTFO,
CALISTHENICS & ORTHODONTIA

IN REMEMBRANCE OF

OUR BELOVED DR. DOBB
BECAUSE

THE WORLD IS ALMOST THROUGH!

March 19, 2015

7:2 AA55, the Magic Number

7:3 Laser robots!

7:4 A Story of Settled Science

7:5 Scapy is for Script Kiddies

7:6 Funky Files, the Novella!

7:7 Extending AES-NI Backdoors

7:8 Innovations with Core Files

7:9 Bambaata on NASCAR

7:11 A Modern Cybercriminal

7:12 Fast Cash for Bugs!

– — — – — — — — – — – — — — – — – — — – — – – — – — — —

Heidelberg, Baden-Württemberg:

Funded by Single Malt as Midnight Oil and the
Tract Association of PoC‖GTFO and Friends,
to be Freely Distributed to all Good Readers, and
to be Freely Copied by all Good Bookleggers.

Это самиздат; therefore, go ye into all the world, and preach the gospel to every creature!
0, $0, £0. pocorgtfo07.pdf.

1

Legal Note: This telecast is copyrighted by the NFL for the private use of our audience. Any other use of this
telecast or of any pictures, descriptions, or accounts of the game without the NFL’s consent, is prohibited. Just
kidding!

Reprints: Bitrot will burn libraries with merciless indignity that even Pets Dot Com didn’t deserve. Please
mirror–don’t merely link!–pocorgtfo07.pdf and our other issues far and wide, so our articles can help fight the
coming robot apocalypse.

Technical Note: This issue is a polyglot that can be meaningfully interpreted as a ZIP, a PDF, a BPG, or HTML
featuring a BPG decoder. We no longer include prior issues in the zip, in order to leave room for more curiosities.
Don’t be surprised when you stumble upon occasional polyglot матрёшки and chimeras.

Dedication: This issue is dedicated to Terry Pratchett, R.I.P.

“I meant,” said Ipslore bitterly, “what is there in this world that makes living worthwhile?”
Death thought about it.
Cats, he said finally. Cats are nice.

Printing Instructions: Pirate print runs of this journal are most welcome, but please do it properly! PoC‖GTFO
is to be printed duplex, then folded and stapled in the center. Print on A3 paper in Europe and Tabloid (11” x 17”)
paper in Samland. Secret government labs in Canada may use P3 (280 mm x 430 mm) if they like. The outermost
sheet should be on thicker paper to form a cover.

1 # This i s how to conver t an i s su e f o r dup lex p r i n t i n g .
sudo apt−get i n s t a l l pdfjam

3 pdfbook −−short−edge pocorgt fo07 . pdf −o pocorgt fo07−book le t . pdf

Preacherman Manul Laphroaig
Ethics Advisor The Grugq
Poet Laureate Ben Nagy
Editor of Last Resort Melilot
Carpenter of the Samizdat Hymnary Redbeard
Funky File Formats Polyglot Ange Albertini
Assistant Scenic Designer Philippe Teuwen
Special Correspondent on NASCAR Count Bambaata
Minister of Spargelzeit Weights and Measures FX

2

1 With what shall we commune this evening?

Neighbors, please join me in reading this eighth release of the International Journal of Proof of Concept or
Get the Fuck Out, a friendly little collection of articles for ladies and gentlemen of distinguished ability and
taste in the field of software exploitation and the worship of weird machines. If you are missing the first
seven issues, we the editors suggest pirating them from the usual locations, or on paper from a neighbor
who picked up a copy of the first in Vegas, the second in São Paulo, the third in Hamburg, the fourth in
Heidelberg, the fifth in Montréal, the sixth in Las Vegas, or the seventh from his parents’ inkjet printer
during the Thanksgiving holiday.

We begin our show tonight in Section 2 with something short and sweet, an executable poem by Morgan
Reece Phillips. Funny enough, 0xAA55 is also Pastor Laphroaig’s favorite number!

We continue in Section 3 with another brilliant article from Micah Elizabeth Scott. Having bought a
BD-RW burner, and knowing damned well that a neighbor doesn’t own what she can’t open, Micah reverse
engineered that gizmo. Sniffing the updater taught her how to dump the firmware; disassembling that
firmware taught her how to patch in new code; and, just to help the rest of us play along, she wrapped all
of this into a fancy little debugging console that’s far more convenient than the sorry excuse for a JTAG
debugger the original authors of the firmware most likely used.

In Section 4, Pastor Laphroaig warns us of the dangers that lurk in trusting The Experts, and of one
such expert whose witchhunt set back the science of biology for decades. This article is illustrated by Boris
Efimov, may he rot in Hell.

In Section 5, Eric Davisson describes the internals of TCP/IP as a sermon against the iniquity of the
abstraction layers that—while useful to reduce the drudgery of labor—also cloud a programmer’s mind and
keep him from seeing the light of the hexdump world.

Ange Albertini is known to our readers for short and sweet articles that quickly describe a clever polyglot
file in a page or two. In Section 6, he finally presents us with a long article, a listing of dozens of nifty tricks
that he uses in PoC‖GTFO, Corkami, and other projects. Study it carefully if you’d like to learn his art.

In Section 7, BSDaemon and Pirata extend the RDRAND trick of PoC‖GTFO 3:6—with devilish cunning
and true buccaneer daring—to actual Intel hardware, showing us poor landlubbers how to rob not only
unsuspecting virtual machines but also normal userland and kernel applications that depend on the new
AES-NI instructions of their precious randomness—and much more. Quick, hide your AES! Luckily, our
neighborly pirates show how.

Section 8 introduces us to Ryan O’Neill’s Extended Core File Snapshots, which add new sections to the
familiar ELF specification that our readers know and love.

Recently, Pastor Laphroaig hired Count Bambaata on as our Special Correspondent on NASCAR. After
his King Midget stretch limo was denied approval to compete at the Bristol Motor Speedway, Bambaata fled
to Fordlandia, Brazil in a stolen—the Count himself says “liberated”—1957 Studebaker Bulletnose in search
of the American Dream. When asked for his article on the race, Bambaata sent us by WEFAX a collection
of poorly redacted expense reports1 and a lovely little rant on Baudrillard, the Spirit of the 90’s, and a world
of turncoat swine. You can find it in Section 9.

Section 11 is the latest from Ben Nagy, a peppy little parody of Hacker News and New–Media Web 2.0
Hipster Fashion Accessorized Cybercrime in the style of Gilbert and Sullivan. Sing along, if you like!

Finally, in Section 12 we do what churches do best and pass around the old collection plate. We don’t
need alms of Dollars or Euros, so send those to Hackers for Charity in Uganda.2 Rather, we pass the plate
to ask for your doodles and your sketches, your crazy ideas that work well enough to prove the concept, well
enough to light up the mind, well enough to inspire the next lady or gentleman to do something clever and
strange.

1Bambaata, if you’re reading this, please call me. Your Amex is beyond its limit after you expensed two “Charlie Miller
kitchens,” and we had to reject payment in the amount of $20,000 USD to “You Better Belize It Bail Bonds.” Oh, and if by
chance you happen to be arrested in Brazil, please ask the Federales when the impounded H2HC 2013 conference badges will
appear on Ebay. —PML

2This isn’t a joke, and we’re not being snarky. Send money to HFC.

3

2 The Magic Number: 0xAA55

by Morgan Reece Phillips

1 [org 0x7c00] ; make nasm aware of the boot sec tor o f f s e t

3 mov bp , 0x8000 ; move the base of the s tack pointer beyond the boot sec tor o f f s e t
mov sp , bp ; move the top and bottom stack po inters to the same spot

5
mov bx , poem

7 ca l l pr int_st r
jmp $; loop forever

9
pr int_st r : ; de f ine a pr in t ‘ ‘ funct ion ’ ’ for nu l l terminated s t r i n g s

11 mov al , [bx] ; p r in t tha t low b i t , then that high b i t
cmp al , 0

13 je the_end
mov ah , 0x0e ; s e t up the s c r o l l i n g t e l e t y p e in t e r rup t

15 int 0x10 ; c a l l in t e rup t handler
add bx , 0x1

17 jmp pr int_st r
the_end :

19 ret

21 poem :
db 0xA, 0xD, \

23 ’/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ’ , \
0xA, 0xD, \

25 ’∗∗ The Magic Number: 0xAA55’ , \
0xA, 0xD, \

27 ’∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/ ’ , \
0xA, 0xD, \

29 0xA, 0xD, \
’A word gives l i f e to bare metal ’ , \

31 0xA, 0xD, \
0xA, 0xD, \

33 ’Bytes inviting execution ’ , \
0xA, 0xD, \

35 0xA, 0xD, \
’Guide to a sector to sett le ’ , \

37 0xA, 0xD, \
0xA, 0xD, \

39 ’A word gives l i f e , to bare metal ’ , \
0xA, 0xD, \

41 0xA, 0xD, \
’The bootloader ’ , 0x27 , ’ s role i s v ita l ’ , \

43 0xA, 0xD, \
0xA, 0xD, \

45 ’Denoted by i t s locution−− ’ , \
0xA, 0xD, \

47 0xA, 0xD, \
’A word gives l i f e to bare metal ’ , \

49 0xA, 0xD, \
0xA, 0xD, \

51 ’Bytes inviting execution ’ , \
0xA, 0xD, \

53 0xA, 0xD, \
’// @linuxpoetry (linux−poetry.com) ’ , \

55 0

57 t imes 510−($−$$) db 0 ; wr i te zeros to the f i r s t 510 by tes
dw 0xaa55 ; wr i te the magic number

An MBR/ASM/PDF polyglot variant made by the usual suspects is available in this very polyglot PDF.

4

3 Coastermelt

by Micah Elizabeth Scott

3.1 Getting Inside Your Optical Drive’s Head

This is the first of perhaps several articles on the adventures of coastermelt, an art-hacking project with
the goal of creating cheap laser graffiti using discs burned by Blu-Ray drives with hacked firmware

3.1.1 Art Hacking Manifesto

If an engineer is a problem solver, hackers and artists are more like problem tinkerers. Some of the most
interesting problems are so far beyond the scope of any direct solution that it seems futile to even approach
them head-on. It is the artist’s purview to creatively approach these problems, sideways or upside down if
necessary

When an engineer is paid to make a tool, is it not the money itself that ultimately decides the tool’s
function? I believe that to be a hacker is to see tools as things not only to make but to re-make and subvert.
By this creative reapplication of technology, research and problem-solving need not be restricted to those
who own the means of production.

So says the Maker’s manifesto: if you can’t open it, you don’t own it. I’d like to build on this: if we work
together to open it, we all own it. And maybe we can all learn something along the way.

3.1.2 I heard there were laser robots?

Why yes, laser robots! Optical discs may be all but dead as a data storage medium, but the latest BD-RW
drives contain feats of electromechanical engineering that leave any commercial 2D or 3D printer in the dust.
Using a 405 nm laser, they can create marks only 150 nm long, with accuracy better than 70 nm. Tiny
lenses mounted on a fast electromagnetic suspension can keep perfect focus on grooves only 320 nm apart
as the disc spins at over 7 m/s.

A specialized system-on-chip generates motor and laser control signals, amplifies and demodulates the
light signals captured by a photodiode array, and it does all of this in the service of fairly pedestrian tasks
like playing motion pictures and making backups of cat photos.

My theory is that, with quite a lot of effort, it would be possible to create new firmware for a common
Blu-Ray burner such that we could burn discs with arbitrary patterns. Instead of the modulated binary data
that stays nicely separated into the tracks of a spiral groove, I think we can treat the whole disc surface as
a canvas to draw on with sub-100 nm precision.

If this works, it should be possible to create patterns fine enough that they diffract interestingly under red
laser illumination. By bouncing a powerful laser pointer off of a specially burned BD-R disc and targeting a
flat surface, perhaps we can control the shape of the eventual illumination well enough to project words or
symbols.

This is admittedly a very long shot. Perhaps the patterns have nowhere near enough resolution. Perhaps
the laser pointer would need to be much too powerful. If this works out, I dream of creating a mobile printing
press for light graffiti. If not, I suspect the project may still lead somewhere interesting.

3.1.3 Device Under Test

For coastermelt I chose the Samsung SE-506CB optical drive, a portable USB 2.0 burner that’s currently
quite popular. It retails for about $80. Inside, I found an MT1939 SoC, an undocumented and highly
application-specific chip from MediaTek. It was easy to find some firmware updates which became a starting
point for understanding this complicated black box.

My current understanding is that the MT1939 contains a pokey ARM7 processor core along with a lot of
strange application-specific peripherals and about 4 MB of RAM. There’s also an 8-bit 8051 processor core

5

in there, which shares access to the USB controller. The USB software stack seems to be confusingly split
between the ARM firmware and the tiny 8051 firmware, for still-unknown reasons.

There are two customized and undocumented motor control chips from TI, which drive a stepper motor,
brushless motor, and the voice coils that quickly position and focus the lenses. As far as I can tell, these
chips just act as high-power load drivers. All of the logic and timing seems to be within that MT1939 chip.

3.1.4 How did we get here anyway?

This has been a complex journey full of individual hacks that could each make an interesting story. In my
experience, reverse engineering is much like playing a point-and-click or text adventure game. There’s a
huge world to explore, and so much of your time can be spent on probing the boundaries of that world,
understanding who the characters are and what their motivations are, and suffering through plenty of
enlightening but frustrating dead-ends.

I wanted to share this process as best I could, in a way that could be documentation for the project, an
educational peek into the world of reverse engineering, and an invitation to collaborate. I created a video
series3 with two episodes so far. I won’t repeat those stories here; let’s go somewhere new.

3.1.5 Down the Rabbit Hole

If you take the blue pill, the story ends, and you wake up believing your optical drives only accept standard
SCSI commands that read and write data according to the established MMC specifications.

Of course, that is a convenient fairy tale. Firmware updates exist, and so we know the protocol must be
Turing-complete already. In this tiny world, our red pill is a patched firmware image that adds a backdoor4

with enough functionality to implement a simple debugger. After installing the patch,5 we can go in:

backdoor micah$./cmshell.py

__ __ __

.----.-----.---.-.-----| |_.-----.----.--------.-----| | |_

| __| _ | _ |__ --| _| -__| _| | -__| | _|

|____|_____|___._|_____|____|_____|__| |__|__|__|_____|__|____|

--IPython Shell for Interactive Exploration--------------------

Read, write, or fill ARM memory. Numbers are hex. Trailing _ is

short for 0000, leading _ adds ’pad’ scratchpad RAM offset.

Internal _ are ignored so you can use them as separators.

rd 1ff_ 100

wr _ 1febb

ALSO: rdw, wrb, fill, watch, find

bitset, bitfuzz, peek, poke, read_block

Disassemble, assemble, and invoke ARM assembly:

dis 3100

asm _4 mov r3, #0x14

dis _4 10

ea mrs r0, cpsr; ldr r1, =0xaa000000; orr r0, r1

ALSO: tea, blx, assemble, disassemble, evalasm

3https://vimeo.com/channels/coastermelt
4https://github.com/scanlime/coastermelt
5There’s a Getting Started section in the README that should help.

6

Or compile and invoke C++ code with console output:

ec 0x42

ec ((uint16_t*)pad)[40]++

ecc println("Hello World!")

ALSO: console, compile, evalc

Live code patching and tracing:

hook -Rrcm "Eject button" 18eb4

ALSO: ovl, wrf, asmf, ivt

You can use integer globals in C++ and ASM snippets,

or define/replace a named C++ function:

fc uint32_t* words = (uint32_t*) buffer

buffer = pad + 0x100

ec words[0] += 0x50

asm _ ldr r0, =buffer; bx lr

You can script the device’s SCSI interface too:

sc c ac # Backdoor signature

sc 8 ff 00 ff # Undocumented firmware version

ALSO: reset, eject, sc_sense, sc_read, scsi_in, scsi_out

With a hardware serial port, you can backdoor the 8051:

bitbang -8 /dev/tty.usb<tab>

wx8 4b50 a5

rx8 4d00

Happy hacking! -- Type ’thing?’ for help on ’thing’ or

~MeS‘14 ’?’ for IPython, ’%h’ for this again.

In [1]:

Such a strange debugger! At a basic level everything works by peek and poke in memory with the
occasional call. The shell is based on the delightful IPython, with commands for easy inline C++ and
assembly code. Integer variables and register values are bridged across languages when possible.

3.1.6 GO NORTH; LOOK

You have entered a console full of strange commands. The CPU seems to be an ARM. You don’t know what
it’s doing now, but it runs your commands when asked. Before you appears a vast 32-bit address space,
mostly empty.

You happen to see a note on the ground, a splotchy Hilbert curve napkin sketch followed by a handwritten
table of hexadecimal numbers with uncertain names scrawled nearby.

7

Flash, 2 MB 00000000 - 001fffff

. . . write-protected bootloader, 64 kB 00000000 - 0000ffff

. . . loadable, 1863 kB 00010000 - 001e1fff

. . . storage, 120 kB 001e2000 - 001fffff

DRAM, 4 MB 01c08000 - 02007fff

MMIO 04000000 - 043fffff

You can peek around at memory, and things seem to be as they appear for the most part. The flash
memory can be read and disassembled, interrupt vectors pointing to code that can unfurl into many hours
of disassembly and head-scratching. DRAM at this point is like a ghost town, plenty of space to build
scaffolding or conduct science

In [1]: ea mov r0, pc; mov r1, sp

r0 = 0x01e4000c, r1 = 0x0200067c

In [2]: rdw 200067c 30

0200067c 01000000 01e40000 01ffc290 00000007 0000000d 01ffc2a8 0004bad7 00000000

0200069c 01ffc290 02000cf8 01ffc290 02000cf8 0001efa9 00000000 00000000 02000cdc

020006bc 01ffb76c 02000c0e 0001ec2f 00000000 02000cdc 01ffb76c 00018c07 00000000

020006dc 00018e31 00000032 02000cdc 00167558 00000000 00000000 00000000 00000000

020006fc 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

0200071c 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

Using some inline assembly, we find the program counter and stack pointer, and separately we dump the
memory where the top of the stack was. These can’t tell us what the firmware would have been doing had
we not rudely interrupted with our backdoor, but these are breadcrumbs showing us some of the steps the
firmware took just before we intervened.

3.1.7 30 Gauge Enamel–Coated Freedom

Direct physical access is of course the ultimate hacking tool. With the USB backdoor we can send the
ARM processor cutesy little notes asking it or even daring it to run instructions for us, but this will end in
heartbreak if we expect to hold the CPU’s attention for longer than one fleeting SCSI command.

Heartbreak is a complicated thing though, sometimes it can act like a forest fire leaving the ground fertile
for fresh inspiration. If the ARM and the SCSI driver were to never speak again, how could we still contact
the ARM? This is where we need to warm our soldering irons. If there’s blue wire there’s a way. Let’s add
a serial port for the next step.

3.3v Serial IN

3.3v Serial OUTGround

8

3.1.8 GET WALKTHROUGH

In the first coastermelt video, I got as far as using this serial port to build an alternate debug backdoor
that can break free from the control flow in the original firmware.

In [1]: bitbang -8 /dev/tty.usbserial-A400378p

* Handler compiled to 0x2e8 bytes, loaded at 0x1e48000

* ISR assembled to 0xdc bytes, loaded at 0x1e48300

* Hook at 0x18ccc, returning to 0x18cce

* RAM overlay, 0x8 bytes, loaded at 0x18ccc

* Connecting to bitbang backdoor via /dev/tty.usbserial-A400378p

* Debug interface switched to <bitbang.BitbangDevice instance at 0x102979998>

305 / 305 words sent

* 8051 backdoor is 0xef bytes, loaded at 0x1e49000

* ARM library is 0x3d4 bytes, loaded at 0x1e490f0

* 8051 backdoor running

In the second video, I introduced a CPU emulator that can run the ARM firmware on your host computer,
proxying all I/O operations back to the debug backdoor while of course logging them.

In [2]: sim

235 / 235 words sent

* Installed High Level Emulation handlers at 01e00000

- initialized simulation state

[INIT]0 ----- >00000000 ldr pc, [pc, #24]

r0=00000000 r4=00000000 r8=00000000 r12=00000000

r1=00000000 r5=00000000 r9=00000000 sp=00000000

r2=00000000 r6=00000000 r10=00000000 lr=ffffffff

r3=00000000 r7=00000000 r11=00000000 pc=00000000

Now we can follow in the normal firmware’s footsteps, mapping out the tiny islands of I/O scattered
through this sea of memory addresses. As the %sim command churns away, every instruction and memory
access shows up in trace.log. In the video you can see a demo where a properly arranged replay of these
register writes can trigger motor movement.

This trace log is like a walkthrough, showing us exactly how the normal firmware would use the hardware.
It’s helpful, but certainly not without its limitations. There’s so much data that it takes some clever filtering
to get much out of it, and it’s quite slow to run the simulation. It’s a starting point, though, and it can offer
clues and memory addresses to use in other experiments with other tools.

At this point in the project, we have some basic implements of cartography, but there isn’t much of a
map yet. Do you like exploring? I have the feeling there’s some really neat stuff in here. With so much
interesting hardware to map out, there’s enough adventure to share. Take an interesting journey, and be
sure to tell us what you find

9

4 Of Scientific Consensus and a Wish That Came True

a sermon by Pastor Manul Laphroaig

Every now and then we see some obvious bullshit being peddled under the label of science, and we wish,
couldn’t we just put a stop to this? This bullshit is totally not in the public interest—and isn’t the government
supposed to look after the public interest? Wouldn’t it be nice if the government shut these charlatans down?

This is the story of a science community that had had this wish come true.

Once upon a time in a country far far away there
was an experimental scientist who managed to solve a
number of important real-world problems, or at least
managed to convince himself and many other scien-
tists that he did. His work brought journalists to
otherwise unexciting scientific conferences and made
headlines across the world.6 He might have ended
up in history as a talented experimentalist who chal-
lenged contemporary theories to refine themselves by
sticking them with examples they didn’t quite cover.
As his luck would have it, though, he came of age in
the time and place where scientific debates were being
settled by majority votes and government action.

It so happened that the government of that coun-
try was very pro–science. They took to heart the
stories of scientists being kept back by ignorant ret-
rogrades and charlatans throughout history, and they
would have none of that. They were out to give sci-
ence the support and protection it deserved, and they
looked to it to solve practical problems. So they took
a keen interest, and, being well–educated and versed
in the scientific method as they were, trusted them-
selves to tell a true scientific theory from an obviously
erring one.

Since scientists continually find themselves in bit-
ter debates, this ability was extremely useful. They
had the power to settle such debates to reap all the
rewards of having the right science and to stop those
scientists in the wrong from wasting people’s time and
resources. Sometimes the power had to stop them
the hard way, to protect the impressionable youth
who could otherwise be mislead by complicated argu-
ments; but that was all right because, once the debate
is settled, isn’t it one’s duty to protect the young ’uns
from harmful influences with all the means at hand?

So our up-and-coming scientist did the right
thing: he petitioned the government to suppress the
erring opposition, citing his experimental successes
and the opposition’s failures, obvious waste of effort,
and conflicts of interest. Besides his successes, he
built a strong moral case against his opponents: while

his school showed exactly how to produce broad im-
pacts for the benefit of humanity, the others mostly
proclaimed that the result of any direct human efforts
would be at best uncertain, that the current state of
Nature might be really hard to change, and yet that
humans were rather powerless against its accidental
changes.

Clearly, such interpretations of science were per-
versions that couldn’t be tolerated. Moreover, the im-
mediate implications of the opponents’ theories obvi-
ously benefited the worst political actors of the age—
and guess who funded the bulk of their so–called sci-
ence? The very same regressive forces that sought
to forestall Social Progress! Of course, not all of the
opposition was knowingly in their pay, but shouldn’t
Real Scientists know better anyway, especially when
the majority has had its say? Surely they have had
enough notice.

The name of our scientist was Trofim Deniso-
vich Lysenko. The reactionary pseudo-science in the
sights of his and his hard-won scientific majority’s
rightful wrath: so–called Genetics. The place was
the Soviet Union, 1936–48.

More precisely, it was the Mendelian theory of
heredity based on genes, the so–called Weismannism–
Morganism. That theory postulated that genes gov-
erned heredity, mutated unpredictably under factors
such as radiation, and that mutations were hard to

6You’ll find one such headline from the New York Times on the page 12.

10

direct for human purposes such as creation of new
useful breeds of plants and animals. That was, of
course, scandalous: didn’t Marxist science already
assert that environment was solely responsible for
shaping all essential characteristics of life? Surely
this “fear and doubt” approach of genetics that pro-
claimed all human beings to be carriers of countless
hopeless mutations did not belong in the world of
progressive sciences.

This theory was merely re–arming the racists and
eugenicists, intent on suppressing the lower classes!

It was obvious that this “science” was in fact pure
fascism, not matter how desperately it tried to dis-
tance itself from such anti-science atavisms.

And all of this was under the banner of “pure sci-
ence”, even though obviously financed by and serving
the interests of the imperialist ruling class!

There is an old word for what happens when sci-
ence becomes settled by majority, and the settlement
gets enforced by the government. This good old word
is Inquisition.

Inquisition got started to protect the lay peo-
ple from destructive ideas that any learned person
at the time would easily recognize as false, such as
that “witches” could somehow interfere with crops
and flocks. It eventually sought the power of the
government to enforce its verdicts and to curb the
charlatans from confusing those of little knowledge.
It got what it sought, and the rest is history. Which,
of course, tends to repeat itself.

11

New York Times report from the sixth Interna-
tional Congress of Genetics (1932) in Ithaca, NY.

All cartoons in this sermon are by one Boris Efi-
mov, who started his long career in Party Art by
lauding Trotsky, then glorifying Stalin and calling for
summary executions of “Trotskyite dogs” (which in-
cluded his brother), did his humble bit in promoting
first the heroic Soviet political police in 1930s, and
then the “Soviet peace initiatives” and “Soviet democ-
racy” throughout the 1960s and 70s, denouncing the
imperialists and the wavering.

The Great Captain leads us from Victory to Victory!

One of his last commissions (he was over 85),
was to ridicule both those who clamored to speed
up Gorbachov’s “Perestroika” and those showing too
much caution in conducting it—because the right way
was to go in lockstep with the Party. (Just like he
did in 1987, drawing pig-like Deniers of Lawless Ter-
ror worshiping the Great Captain’s blood-spattered
idol.) When the Party’s power ended, he complained
that “political cartooning didn’t exist anymore.”

He passed away in 2008, a paragon of sticking
to just the prescribed amount of murderous blood-
thirstiness at any given time, a true knight of the
Party Line—and, if there is ever a Hell, doubtlessly
sticking Hell’s engineers with the problem of how to
reward such a sterling life achievement of toeing it
ever so precisely. There are many shitty jobs in this
world and the one beyond, but, believe in Hell or not,
that one takes the cake.

Efimov’s Trotsky: Revolutionary Saint to Fascist Enemy!

12

5 When Scapy is too high-level

by Eric Davisson

Neighbors, we are hackers. Our power comes from the ability to understand and manipulate things at
the lowest level we can get our hands on. Verily, a stack-based buffer overflow makes sense to those who
understand machine code and assembly, but it makes no sense to whose who only use high-level languages,
for they know not what a program stack is, nor rejoice in the wonders of the ABI.

Likewise with TCP/IP. Those who only use others’ applications to talk to a networked host never learn
the miracles of the protocols below. Preach to them the good news of Netcat, and of Scapy in Python or
Net::Raw in Perl, neighbors—but forget not that these excellent tools may still mask the true glory of the
raw bytes below.

This article will take us a step farther down than these tools do. We will create a proper packet in a
pcap file with xxd. Let us please the ASCII art gods of TCP in the truly proper way, neighbors!

– — — – — — — — – — – — — — – — – — — – — – – — – — — —
There are books dedicated to TCP/IP, neighbors, such as St. Stevens’ TCP/IP Illustrated Vol. 1, a very

thick and thorough book indeed. But at times when you don’t have the Bible a mere tract would suffice;
and so here’s ours briefest tract on TCP/IP.

Let’s begin by compressing the full OSI model to just the four layers that are actually relevant to TCP/IP.
From the lowest layer up, we have the Data Link, Network, Transport, and Application layers—but of course
it’s not what we call these layers that matters, but what bytes they contain.

Each layer has a byte or two that specify which kind of protocol the next layer will be. So the Data Link
Layer will specify IPv4 as the Network Layer, which will specify TCP as the Transport Layer, which will
specify HTTPS as the Application Layer, and so on. This is really what makes the “stack”, and we will tour
it from the bottom up.

5.1 The Layers

Data Link Layer This is the first and the simplest layer. For most traffic, it has the destination and
source MAC addresses and 2 bytes referring to what the Network Layer should be. The most common next
protocol would be IPv4 (0x0800). Other possible protocols include IGMP (0x0641), ARP (0x0806), IPv6
(0x86DD), and STP (0x8181).

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Destination MAC Address |

+-+

| Destination MAC Continued | Source Mac Address |

+-+

| Source MAC Continued |

+-+

| Network Layer Protocol |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Network Layer (RFC791) Let’s assume we are dealing with IPv4. There are many fields in the IPv4
header; the most interesting ones7 are: Version, Total length, TTL, Source and Destination IP addresses,
Checksum, and—the most important to our next layer—the Protocol byte.

That next layer to the IPv4 network layer protocol can also be many things. The most common are
TCP (0x06), UDP (0x11), and ICMP (0x01), but there are well over a hundred other choices such as IGMP
(0x02), GRE (0x2F), L2TP (0x73), SKIP (0x39), and many others.

7The Pastor notes that fragroute might beg to differ, and your neighborly IDS might agree. It suffices to say that the IDS
evasion party that Rev. Ptacek and Rev. Newsham started in 1998 is still going strong.

13

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

|Version| IHL |Type of Service| Total Length |

+-+

| Identification |Flags| Fragment Offset |

+-+

| Time to Live | Protocol | Header Checksum |

+-+

| Source Address |

+-+

| Destination Address |

+-+

| Options | Padding |

+-+

Transport Layer (RFC793) The intent of this layer is to handle the transportation of data between two
hosts. For UDP, this header is just the source and destination ports, length, and a checksum. For “reliable”
connections there’s TCP, of which we’ll talk more later. TCP headers are more complex, since it takes more
data to set up a connection with a 3-way handshake and agreed-upon SEQ/ACK numbers. So TCP includes
the ports, some flags, a window size, checksum, and some other fields. The destination port is implicitly
used to specify what the application layer will be: HTTP (80), HTTPS (443), SSH (22), SMTP (25), and
so on.

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Source Port | Destination Port |

+-+

| Sequence Number |

+-+

| Acknowledgment Number |

+-+

| Data | |U|A|P|R|S|F| |

| Offset| Reserved |R|C|S|S|Y|I| Window |

| | |G|K|H|T|N|N| |

+-+

| Checksum | Urgent Pointer |

+-+

| Options | Padding |

+-+

| data |

+-+

And now that the gods as ASCII art have been properly pleased, let’s make some packets!

5.2 Crafting a Packet

Link Layer Let’s choose a destination MAC address of 12:34:56:78:9A:BC and a source MAC address
of 31:33:37:31:33:37. We also need to specify the network-layer protocol of IPv4, 0x0800.

14

Network Layer (IPv4) The version is 0x4, and that’s the first nybble of our header. The header length
is going to be twenty bytes, as we will use no IP options.8. The second header nybble is the header length in
32-bit words, and so it will be 0x5 to represent our twenty bytes. So the first byte will be 0x45, combining
the version and the header length. When you next see this byte at the start of an IP packet’s hexdump, give
it a smiling node like a good neighbor!

The type of service byte doesn’t matter unless your site implements special QoS for things like voice and
streaming video, so we’ll arbitrarily set that to 0x00. The following field, the total length of this packet, will
be 61 bytes (IP+TCP+Payload), 0x003D in hex. We’ll just spoof the IP identification field to be 0x1337.
Next, let’s set the IP flags to not fragment (0b010) and a fragment offset of zero. As these fields share bytes,
the hex result of these two bytes will be 0x4000. For the next field, the Time-To-Live, let’s be generous and
give our packet a TTL of 140 (0x8C), which is higher than Linux or Windows would set by default.9

Our higher-layer protocol will be TCP, 0x06. Let’s skip over the IP checksum for the moment (although
we will have to correct that later). The source IP will be 192.168.1.1 (0xC0A80101) and the destination IP
will be 192.168.1.2 (0xC0A80102), an HTTPS server. There will be no options or padding.

To compute the checksum, let’s take all our IP header data we filled in so far in two-byte chunks, add it
together, then add the overflowing byte back into the result, and subtract from 0xFFFF. So 0x4500 + 0x003D

+ 0x1337 + 0x4000 + 0x8C06 + 0xC0A8 + 0x0101 + 0xC0A8 + 0x0102 is 0x2A7CD. 0x2 is the overflow, so
we add it back in to get 0xA7CD + 0x2 = 0xA7CF. Subtracting this from 0xFFFF, we find 0xFFFF - 0xA7CF
is 0x5830, our packet’s IPv4 checksum.

It’s now time to set up our transport layer, TCP.

Transport Layer (TCP) Let’s say our source port will be 0x1337, and the destination port will be
0x01BB, which is decimal 443 for HTTPS. There’s no point to any specific SEQ or ACK numbers for this
implausible single packet, so we’ll just use 0x00000000 and 0x00000000.

The data offset (TCP header length) and flags share some bytes. We will have 32 bytes in our TCP
header, including the 12 bytes of TCP options. 32 bytes are eight 32-bit words, so our data offset field is
0x8.

We want this packet to have the flags of PUSH and ACK, so setting these bits gives us 0x18. Combining
these two values gives us the 2-byte value of 0x8018, where the middle zero is a reserved nybble.

As we don’t care to specify a window size at the moment, we’ll default to 0x0000—but keep in mind that
putting a zero length in a TCP response is a rather evil trick you should only use on spammers and SEOs
(look up the SMTP/TCP “LaBrea Tarpit” technique for more details.) We will do the checksum later, as
a TCP checksum applies both to the header and to the payload. Since we won’t be using the URG flag to
mark this packet as urgent, we’ll leave the urgent pointer field as 0x0000.

For the options, we will use two NOPs for padding, to ensure an even number of 32-bit words, 0x0101.
Our option will be a timestamp (0x08), with a length of 10 (0x0A). Its TSval will arbitrarily be 0xDEADBEEF,
and its TSecr will be 0xFFFFFFFF.

It is now time for the TCP checksum. A TCP checksum is calculated similarly to the IP one, but it
also covers some of the IP fields!10 The source IP, the destination IP, and the protocol number must all be
included. Also included is the size of the TCP section, including the payload data.

(0xC0A8 + 0x0101 + 0xC0A8 + 0x0102 + 0x0006 + 0x0029) + 0x1337 + 0x01BB + 0x0000 + 0x0000

+ 0x0000 + 0x0000 + 0x8018 + 0x0000 + 0x0000 + 0x0101 + 0x080A + 0xDEAD + 0xBEEF + 0xFFFF +
0xFFFF + 0xD796 + 0xC34F + 0x4FC7 + 0xE3C6 + 0xD600 is 0x963A3 with an overflow of 0x9. 0x63A3 +
0x9 is 0x63AC, and 0xFFFF - 0x63AC is 0x9C53, our TCP checksum.

PCAP Metadata So now we have the packet, but to look at it with the standard dissection tools (Tcp-
dump, Wireshark) or to use it with an injection tool (Tcpreplay), we need to create some metadata first.

8But if you are looking to light up your local IDS like a Christmas tree, by all means add some later! –PML
9But check out /proc/sys/net/ipv4/ip_default_ttl; for Windows, you are on your own—and many happy reboots! –PML

10Yes, neighbors, it is an OSI layering violation—and it has been extracting its cost, in sweat, blood, and 0day. And if you
think you are properly scared, you are not scared enough—just think of that SCADA protocol that has kept your neighborhood’s
lights on, so far. –PML

15

We will use the PCAP format, the most common format of packet capture tools.
A PCAP starts with 24 bytes of global file-scope metadata and another 16 bytes of per-packet meta-

data. The first six of PCAP’s 4-byte fields are the magic number (0xA1B2C3D4), the PCAP version (2.4,
so 0x00020004), the timezone (GMT, so 0x00000000), the sigfigs field11 (0x00000000), the snaplen12

(0x0001000F) and the network’s data link type13 (Ethernet: 0x00000001).
So our global header will be A1B2C3D40002000400000000000000000001000F00000001. Fun fact: revers-

ing the order of the magic number to 0xD4C3B2A1 will change the endianness of the PCAP metadata—alerting
your packet analyzer that the order of bytes in the capture file from another system should be reversed.

The per-packet data consists of four 4-byte fields: time, microtime, packet length, and captured length.
Let’s set the time to default day (0x4EBD02CF) and zero out the microtime (0x00000000). Our packet length
will be 0x00000004B, and we’ll repeat the same value for the capture length.

Saving the pcap. Below you see a massively ugly command. We are echoing all of the above hex data
in order, starting with the PCAP file’s global metadata and following with the packet data. There isn’t a
single byte of this that we didn’t discuss above; it’s all there. We pipe it through xxd and use the -r and
-p arguments to convert it from hex to actual binary data (-p tells xxd to expect a continuous hexdump
without per-line addresses or offsets, rather than the standard xxd output; any whitespace including line
breaks is ignored in this mode). Say hello to lol.pcap:

echo A1B2C3D4 00020004 00000000 00000000 0001000F 00000001 \

4EBD02CF 00000000 0000004B 0000004B \

\

12345678 9ABC3133 37313337 0800 \

\

45 00 003D 1337 4 000 8C 06 5830 C0A80101 C0A80102 \

\

1337 01BB 00000000 00000000 8 0 18 0000 9C53 0000 \

01 01 08 0A DEADBEEF FFFFFFFF \

\

D796C34F4FC7E3C6D6 | xxd -r -p > lol.pcap

Now that you have a PCAP (see also Fig. 1), you can open it up in Wireshark and select each field in
the Packet Details section to see the corresponding hex data in the Packet Bytes section. If you want to
send a hand-crafted packet over your network, just replay it with something like

sudo tcpreplay -i eth0 lol.pcap

Hack around, change some bytes, and see what happens. Do impossible things, like setting the IPv4
layer’s first byte to 0x43, which specifies an IPv4 packet with a 12-byte IP header. This means the IP header
doesn’t have room for its own IP addresses. What will your little Linksys box do when it gets such a packet?
What will your newest shiny box with that fruit logo do? And how much do you dare trust that penguin,
really? Well, there is—and there has ever been—only one way to find out :)

11In theory, this is the accuracy of time stamps in the capture; in practice, typically set to zero.
12This is the maximum length of captured packets, in octets, or zero for no limit.
13man 7 pcap-linktype (from libpcap0.8-dev or equivalent)

16

0 15 31 47 63

magic number pcap version

A1 B2 C3 D4 00 02 00 04

timezone sigfigs

00 00 00 00 00 00 00 00

snaplen data link type

00 01 00 0F 00 00 00 01

PCAP
global
metadata

time microtime

4E BD 02 CF 00 00 00 00

packet length captured length

00 00 00 4B 00 00 00 4B

PCAP
per-packet
metadata

Destination MAC Source MAC

12 34 56 78 9A BC 31 33

Source MAC Continued NLP

37 31 33 37 08 00

Data
Link
Layer

Ver.n IHL ToS Total Length Identification Fl. Fragment Offset

45 00 00 3D 13 37 40 00

TTL Protocol Header Checksum Source Address

8C 06 58 30 C0 A8 01 01

Destination Address

C0 A8 01 02

Network
Layer

Source Port Destination Port Sequence Number

13 37 01 BB 00 00 00 00

Acknowledgment Number DOff Reserv.
U

R

G

A

C

K

P

S

H

R

S

T

S

Y

N

F

I

N
Window

00 00 00 00 80 18 00 00

Checksum Urgent pointer Options

9C 53 00 00 01 01 08 0A

DE AD BE EF FF FF FF FF

Transport
Layer

Raw

D7 96 C3 4F 4F C7 E3 C6

D6

Payload

Figure 1: Crafted PCAP

17

6 Abusing file formats; or,

Corkami, the Novella

by Ange Albertini

First, you must realize that a file has no intrinsic meaning. The meaning of a file—its type, its validity,
its contents—can be different for each parser or interpreter.

Like beef cuts, which vary with the country’s standards by which the animal is cut, a file is subject to
interpretations of the standard. The beauty of standards is that there are so many interpretations to choose
from!

Because these standards are sometimes unclear, incomplete, or difficult to understand, a variety of abuses
are possible, even if the files are considered valid by individual parsers.

A Polyglot is a file that has different types simultaneously, which may bypass filters and avoid security
counter-measures. A Schizophrenic file is one that is interpreted differently depending on the parser. These
files may look innocent (or corrupted) to one interpreter, malicious to another. A Chimera is a polyglot
where the same data is interpreted as different types, which is a more advanced kind of filter bypass.

This paper is a classification of various file techniques, many of which have already been mentioned in
previous PoCs and articles. The point here is to have an overview and comparison of them, not to necessarily
explain again all of them in detail.

6.1 Identification

It’s critical for any tool to identify the file type as early and reliably as possible. The best way for that is to
enforce a unique, not too short, fixed signature at the very beginning. However, these magic byte signatures
may not be perfectly understood, leading to some possible problems.

Most file formats enforce a unique magic signature at offset zero. It’s typically—but not necessarily—four
bytes. Office documents begin with DO CF 11 E0, ELF files begin with 7F E L F, and Resource Interchange
File Format (RIFF) files begin with R I F F. Some magic byte sequences are shorter.

Because JPEG is the encoding scheme, not a file format, these files are defined by the JPEG File
Interchange Format or JFIF. JFIF files begin with FF D8, which is one of the shortest magic byte sequences.
This sequence is often wrongly identified, as it’s typically followed by FF E0 for standard header or FF E1

for metadata in an EXIF segment.
BZIP2’s magic signature is only sixteen bits long, B Z. However it is followed by the version, which is

only supposed to be h, which stands for Huffman coding. So, in practice, BZ2 files always start with the
three-byte sequence B Z h.

A Flash video’s magic sequence is three bytes long, F L V. It is followed by a version number, which is
always 0x01, and a mask for audio or video. Most video files will start with F L V 01 05.

Some magic sequences are longer. These typically add more characters to detect transfer errors, such as
FTP transfers in which ASCII-mode has been used instead of binary mode, causing a translation between
different end–of–line conventions, escaping, or null bytes.

Figure 2: Brazilian and French beef cuts.

18

Portable Network Graphic (PNG) files always use a magic that is eight bytes long, 89 P N G 0D 0A 1A 0A.
The older, traditional RAR file format begins with R a r ! 1A 07 00, while the newer RAR5 format is one
byte longer, R a r ! 1A 07 01 00.

Some magic signatures are obvious. ELF (Executable & Linkable Format), RAR (Roshal Archive), and
TAR (Tape Archive) all use their initials as part of the magic byte sequence.

Others are obscure. GZIP uses 1F 8B. This is followed by the compression type, the only correct value
for which is 0x08 for Deflate, so all these files are starting with 1F 8B 08. This is derived from Compress,
which began to use a magic of 1F 8D in 1984, but it’s not clear why this was chosen.

Some are chosen for vanity. Philipp Katz placed his initials in ZIP’s magic value of P K, while Fabrice
Bellard chose 0xFB for the BPG file format.

Some use L33TSP34K sequences, such as D0 CF 11 E0, CA FE BA BE, and CA FE FE ED. It looks cool,
but there are not so many words that can be encoded as hex. There aren’t so many collisions, but the
most common one is of course CA FE BA BE, which is used for Java .CLASS and Universal Mach-O. These
are easy to tell apart right after the magic, however. In a Mach-O, the magic signature is followed by
the number of architectures as a big-endian DWORD, which means such a fat binary usually starts with
CA FE BA BE 00 00 00 02 to indicate support for x86 and PowerPC, just two of the twenty supported
architectures.14. Conversely, a Java Class puts minor and major version numbers right after the magic, and
major_version should be greater than or equal to 0x2D, which indicated JDK 1.1 from 1997.15

– — — – — — — — – — – — — — – — – — — – — – – — – — — —

Some file formats can be seen as high-level containers, with vastly differing internal file formats. For
example, the Resource Interchange File Format (RIFF) covers the AVI video container, the WAV audio
container, and the animated image ANI. Thus three different file types (video, audio, animation) are relying
on the same outer format, which defines the magic that will be required at offset zero.

Encodings

Some file formats accept different encodings, and each encoding uses a different Magic signature.

TIFF files can be either big or little endian, with I I indicating Intel (little) endianness and M M for
Motorola (big) endianness. Right after the signature is the number forty-two encoded as a 16–bit word—
00 2A or 2A 00 depending on the endianness—so the different magics feel redundant! A common T I F F

magic before this endianness marker would have been good enough.

32–bit Mach–O files use FE ED FA CE, while 64–bit Mach–O files use FE ED FA CF. The next two fields
also imply the architecture, so a 32–bit Mach-O for Intel typically starts with FEEDFACE 00000007 00000003,
while a 64–bit file starts with FEEDFACF 01000007 80000003, defining a 64b magic, ABI64 architecture, and
Lib64 as a subtype.

Flash’s Small Web Format originally used the F W S magic, then its compressed version used the C W S

magic. More recently, the LZMA–compressed version uses the Z W F magic. Once again, it doesn’t make
sense as the signatures are always followed by a version number. A higher bit could have been set to define
the compression if that was strictly necessary. In practice, however, it turns out that there is rarely a check
for these values. Why do they bother defining a version number and file size if it just works with any value?

While most file formats enforce their magic at offset zero, it’s common for archive formats to NOT
enforce magic at the start of an archive. 7ZIP, RAR, and ZIP have no such requirement. However, some
Unix compressors such as GZIP and BZIP2 do demand proper magic at offset zero. These are just designed
to compress data, with the filename being optional (for GZIP) or just absent (BZIP2).

Specific Examples

TAR, the Tape Archive format, was first used to store files via tape. It’s block-based, and for each file,
the header block starts with the filename. The magic signature, depending on the exact version of TAR,

14http://tinyurl.com/MachO-fat-header
15http://docs.oracle.com/javase/specs/jvms/se7/html/jvms-4.html#jvms-4.1

19

is present at offset 0x100 of the header block. The whole header contains a checksum for itself, and this
checksum is enforced.

PDF in theory should begin with a standard signature at offset zero, % P D F - 1 . [0-7], but in
practice this signature is required only to be within the first kilobyte. This limit is odd, which is likely the
reason why some PDF libraries don’t object to a missing signature. PDF is actually parsed bottom–up for a
complete document interpretation to allow for incremental document modifications. Further, the signature
doesn’t need to be complete! It can be truncated, either to %PDF-1. or %PDF\0.

ZIP doesn’t require magic at offset zero, and like PDF it’s parsed from the bottom up. In this case,
it’s not to allow for incremental updates; rather, it’s to limit those time–consuming floppy swaps when a
multi–volume archive is created on the fly, on external storage. The index structure must be located near
the end of the file.

Even more confusingly, it’s common that viewers and the actual extractor will have a different threshold
regarding the distance to the end of file. WinRar, for example, might list the contents of an archive without
error, but then silently fail to extract it!

Although standard ZIP tolerates not starting at offset zero or not finishing at the last offset, some variants
built on top of the ZIP format are pickier. Keep this in mind when creating funky APK, EGG, JAR, DOCX,
and ODT files.

Bad Magic Signatures

OpenType fonts start with 00 01 00 00, which is actually not a magic signature, but a version number,
which is expected to be constant. How pointless is that?

Windows icons (ICO) and static cursors (CUR) are using the same format. This format has no official
name, but it always has a magic of 00 00.

6.2 Hardware Formats

Hardware-oriented formats typically have no header. They are designed for efficiency, and their parser is
implemented in hardware. They are seen not as files, but as images burned into a ROM or similar storage.
They are directly read (and executed/interpreted) by a CPU, which often specifies critical data at the very
first offsets.

For example, floppy disks and hard disks begin with a 512–byte Master Boot Record (MBR) of executable
code that must end with 0xAA55. Video game console ROMs often begin with the initial stack pointer and
program counter. The TGA image format, which was designed in 1984 as a raster image format to be read
directly by a graphics board, begins with the image’s width and height. (Version 2 of TGA has an optional
footer, ending with a constant signature.)

However, it’s also common that some extra constant structure is required at a specific offset, later in the
memory space. These requirements are often enforced in software by the BIOS or bootloader, rather than
by a hardware check. For example, a Megadrive (Genesis) cartridge must have the ASCII string “SEGA” at
offset 0x100.16 A Gameboy ROM must contain the Nintendo logo for its startup screen from offset 0x104

to 0x133, one of the longest signatures required in any file format.17 Super NES ROMs have a header later
in the file, called the Cartridge Header. The exact offset of this header varies by the type of ROM, but it is
always far enough into the header that polyglot ROMs are easy to create.18 Examples of such polyglots are
shown in Figures 3 and 4.

Abusing File Signature

Obviously, there is no room for abusing signatures as long as the content and the offset of the signatures are
strictly enforced. Signature abuse is possible when parsers are trying to recover broken files; for example,

16http://wiki.megadrive.org/index.php?title=TMSS
17http://problemkaputt.de/pandocs.htm#thecartridgeheader
18http://problemkaputt.de/fullsnes.htm

20

Figure 3: Sega Master System, Gameboy Color & PDF Polyglot

some PDF readers don’t require the presence of the PDF signature at all!

Header abuse is also possible when the specification is incorrectly implemented. For example, the Game-
Boy Pocket—and only the GameBoy Pocket—doesn’t bother to fully check the BIOS signature.

Blacklisting

As hinted previously, PDF can be easily abused. For security reasons, Adobe Reader, the standard PDF
reader, has blacklisted known magic signatures such as PNG or PE since version 10.1.5. It is thus not
possible anymore to have a valid polyglot that would open in Adobe Reader as PDF. This is a good security
measure even if it breaks compatibility with older releases of PoC‖GTFO.

However, it’s critical to blacklist the actual signature as opposed to what is commonly appearing in files.
JPEG File Interchange Format (JFIF) files typically start with the signature, SOI, and an APP0 segment,
which make the file start with FF D8 FF E0. However, the signature itself is only FF D8, which can lead to a
blacklist bypass by using a different segment or different marker right after the signature. I abused this trick
to make a JPEG/PDF polyglot in PoC‖GTFO 0x03, but since then, Adobe has fixed their JFIF signature
parsing. As such, pocorgtfo03.pdf doesn’t work in versions of Adobe Reader released since March of 2014.

Of course, blacklisting can only affect current existing formats that are already widespread. The Z W S

signature that we used for PoC‖GTFO 0x05 is now blacklisted, but the BPG signature used in PoC‖GTFO
0x07 is very recent so it has not been blacklisted yet. Moreover, each signature to be blacklisted has to be
added manually. Requiring the PDF signature to appear earlier in the file—even just in the first 64 bytes

21

instead of a whole kilobyte—would proactively prevent a lot of polyglot types, as most recent formats are
dense at the start of the file. Checking the whole signature would also make it even harder, though not
respecting your own standard even for checking signatures is an insult to every standard.

6.3 File Format Structures

Most file formats are either chunk-based or pointer-based. Chunked files are often some variant of Tag/Length-
/Value (TLV), which are versatile and size-efficient. Pointer-based files are better adapted to direct memory
mapping. Let’s have some fun with each.

Chunk Sequences

The information is cut into chunks, which all have the same top-level structure, often defining a type, via
a tag, then the length of the chunk data to come, then the chunk content itself, of the given length. Some
formats such as PNG also require their chunks to end with a checksum, covering the rest of the chunk. (In
practice, this checksum isn’t always enforced.)

For even more space efficiency, BZIP2 is chunk based, but at the bit level! Bytes are never padded, and
structures are not aligned. It doesn’t waste a single bit, but for that reason it’s damned near unreadable
with a standard hex viewer. Because no block length is pre-encoded, block markers are fairly big, taking 48
bits. These six bytes, if they were aligned, would be 31 41 59 26 53 59, the BCD representation of π.

Structure Pointers

The first structure containing the magic signature points to the other structures, which typically don’t lie
immediately after each other. Pointers can be absolute as in file offsets, or relative to the current structure’s
offset or to some virtual address. In many cases, relative pointers are unsigned. Typically, executable images
use such pointers for their interrupt tables or entry points.

In many chunk-based formats such as FLV, you can inflate the declared size of a chunk without any
warnings or errors. In that case, the size technically behaves as a relative pointer to the next chunk, with a
lower limit.

6.4 Abusing File Format Structures

Empty Space

Block-sized formats, such as ISO,19 TAR, and ROM dumps often contain a lot of extra space that can be
directly abused.

In theory, it may look like TAR should have lots of zero bytes, but in practice, it’s perfectly fine to have
one that’s 7–bit ASCII! This makes it possible to produce an ASCII abstract that is a valid TAR. For good
measure, the one shown in Figure 5 is not only an ASCII TAR, but also a PDF. The ASCII art comes free.

19PoC‖GTFO 0x05

22

Appended Data

Since many formats define an end marker, adding any data after is usually tolerated: after all, the file is
complete, parsing can end successfully. However, it’s also easy for them to check if they reached the end of
the file: in this case (such as BPG or Java Class), no appended data is tolerated at all.

Trailing Space

Metadata fields are often null-terminated with a maximum length. This gives us a bit of controllable space
after the null character. That way, one could fit a PDF signature and stream declaration within the metadata
fields of a NES Sound Format (NSF) to get a working polyglot.

This is shown in Figure 6, where the NSF’s Title is “SSL Smiley song :-)\0%PDF-1.5”. Similarly,
the Author is “Melissa Eliott\0 9 0 obj <<<>>%” and the Copyright is “2014 0xabad1dea"\0 \n

stream \n”.
The original metadata is preserved, while declaring a PDF file and a dummy PDF object that will cover

the rest of the data of the NSF file.

Non-Critical Space

Some fields are required by a standard, but the parsers will forgive us for violations of the standard. These
parsers try to recover information out of corrupt files rather than halting on invalid structures.

JFIF is a clear example. Many JFIF segments clearly define their length, however nothing prevents you
from inserting extra data at the end of one segment. This data may be ignored, and the parser will just look
for the next segment marker. Since JFIF specifies that all segments are made of FF followed by a non-null
byte, as long as your extra data doesn’t encode a segment marker for a known segment type, you’re fine.
Known types include Define Quantization Table FF DB, Define Huffman Table FF C4, Start Of Scan FF DA,
and End Of Image FF D9.

In console ROMs, CPU memory space often starts with interrupt vector tables. You can adjust the
handler addresses to encode a useful value, or sometimes use arbitrary values for unused handlers.

Making Empty Space

In a chunk-structured format, you can often add an auxiliary chunk to carve extra space. Forward compat-
ibility makes readers fully ignore the extra chunk. Figure 7 shows a PNG whose “duMb” chunk happens to
contain valid PCM audio.

Sometimes, you have to flip a bit to enable structure space that can be abused. Examples include the
512–byte training buffer in the iNES (.nes) ROM format, which is used to hold code for enabling cheats.

23

Figure 4: Sega Megadrive, Super Nintendo & PDF Polyglot

Figure 5: PDF, TAR Polyglot in 7–bit Clean ASCII

24

Figure 6: PDF and NES Sound Format polyglot

Figure 7: PNG whose “duMb” chunk contains PCM Audio

25

Figure 8: BPG/HTML/PDF Polyglot. ZIP not shown.

26

A PDF/ZIP/BPG/HTML polyglot BPG20 stands for Better Portable Graphics. It was recently
created as an alternative to JPG, PNG, and GIF. BPG images can be lossy or lossless. The format supports
animation and transparency.

To give BPG more exposure, this issue is a PDF/ZIP/BPG/HTML polyglot. Also, we’re running out of
formats that Adobe hasn’t blacklisted as polyglots.

BPG’s structure is very compact. Some fields’ bits are split over different bytes, most numerical values
are variable–length encoded, and every attempt is made to avoid wasted space. Besides the initial signature,
everything is numerical. ‘Chunk types’—called ‘extension tags’—are not ASCII like they commonly are in
PNG. Information is byte-aligned, so the format isn’t quite so greedily compressed as BZIP2.

BPG enforces its signature at offset zero, and it is not tolerant to appended data, so the PDF part must
be inside of the BPG part. To make a BPG polyglot, enable use the extension flag to add your own extension
with any value other than 5, which is reserved for the animation extension. Now you have a free buffer of
an arbitrary length.

Since the author of BPG helpfully provides a standalone JavaScript example to decompress and display
this format, a small page with this script was also integrated in the file. That way the file is a valid BPG,
a valid PDF, and a valid HTML page that will display the BPG image. You just need to rename the
pocorgtfo07.pdf to pocorgtfo07.html. You can see this in Figure 8.

Thanks to Mathieu Henri for his help with the HTML part.

Moving Structures Around In a pointer-chained format, you can often move structures around or even
inside other structures without breaking the file. These parsers never check that a structure is actually after
or outside another structure.

Technically-speaking, an FLV header defines its own size as a 32–bit word at offset 0x05, big endian.
However nothing prevents you from making this size bigger than used by Flash. You can then insert your
data between the end of the real header and the beginning of the first header packet.

To make some extra space early in ROMs, where the code’s entrypoint is always at a fixed address, just
jump over your inserted data. Since the jump instruction’s range may be very limited on old systems, you
may need to chain them to make enough controllable space.

Structure Order

To manipulate encryption/decryption via initialization vector, one can control the first block of the file to be
processed by a block cipher, so the content of the file in this first block might be critical. It’s important then
to be able to control the chunk order, which may be against the specs, and against the abilities of standard
processing libraries. This was used as AngeCryption in PoC‖GTFO 0x03.

The minimal chunk requirements for PNG are IHDR, IDAT, and IEND. PNG specifies that the IHDR chunk
has to be first, but even though all image generators follow this part of the standard, most parsers fail to
enforce the requirement.

The same is true for JFIF (JPEG) files. The APP0 segment should be first, and it is always generated
in this position, but readers don’t really require it. In practice, a JFIF file with no APPx segments often
produces neither warnings nor errors. Figure 9 shows a functional JPEG that has no APPx segments, neither
a JFIF signature nor any EXIF metadata!

6.5 Data Encodings

It’s common for different file formats to rely on the same data encodings that have been proved reliable
and efficient, such as JPEG for lossy pictures or Deflate/Zlib. Thus it’s possible to make two different file
formats in the same file relying on the same data, stored with the same encoding.

20http://bellard.org/bpg/

27

Figure 9: JPEG with no APPx segments.

Figure 10: JPG/PDF/ZIP Chimera

28

Offset Content JPEG PDF ZIP
00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

00000: FF D8 magic
00002: FF E0 00 10 .J .F .I .F 00 01 01 01 00 48 header

00 48 00 00

00014: FF FE 02 1F comment segment
start (length)

00018: %PDF-1.4 PDF header
& document

1 0 obj

...

00140: 20 0 obj dummy object start
«/Length 69786»

stream

00168: .P .K 03 04 local file header
start

00181: 00 9B filename length
00186: endstream lfh’s filename

endobj dummy object end (abused)

5 0 obj image object start
«/Width 400 ...

stream

00221: FF D8 FF E0 00 10 .J .F .I .F 00 01 01 01 00 image header stored file data
48 00 48 00 00 (end of comment)

00235: FF DB 00 43 ... image data (DQT) — —
112B5: FF D9 end of image — —
112B7: FF FE 00 E6 segment comment

start (not strictly
req.)

112BC: endstream end of image object
endobj

24 0 obj dummy object start
stream

...

112DE: .P .K central directory
01 00

1130C: corkami.jpg filename (correct)
11317: .P .K 05 06 end of central

directory
1132B: 75 00 length of comment
1132E: endstream end of dummy archive comment

endobj object

xref xref, trailer
...

1139A: %%EOF end of file
% line comment

113A1: FF D9 end of image
marker

(end of line) (end of comment)

Table 1: JPG/PDF/ZIP Chimera Layout

29

Figure 11: TIFF/EXT2 Chimera

Abusing Data

JPG/PDF/ZIP Chimera For this kind of abuse, it’s important to see if what comes directly before the
data can be abused, and how the data offset can be abused.

A PDF directly stores JPG image and so does a ZIP archive using no compression, except that a ZIP’s
Local File Header contains a duplicate of the filename just before the file data itself.

Thus, we can create a single chimera that is at once a ZIP, a JPG, and a PDF. The ZIP has the JPEG
image as a JFIF file, whereas the whole file is also a valid JPEG image, and the whole file is also a PDF
that displays the image! Even better, we only have one copy of the image data; this copy is reused by each
of the forms of the chimera.

There are two separate JFIF headers. One is at the top of the file so that the JFIF file is valid, and a
duplicate copy is further in the file, right before the JPEG data, after the PDF header and the ZIP’s Local
File Header.

Other kinds of chimeras are possible. For example, it’s not hard to use TAR instead of ZIP as the outer
archive format. A neighbor could also use PNG (Zlib-compressed data, like in ZIP) instead of JPG.

One beautifully crafted example is the Image puzzle21 proposed at the MIT Mystery Hunt 2015. It’s a
TIFF and an EXT2 filesystem where all the EXT2 metadata is visible in the TIFF data, and the filesystem
itself is a maze of recursive sub-directories and TIFF tiles. This is shown in Figure 11.

Abusing Data to Contain an Extra Kind of Information

Typically, RGB pixels of images don’t need to follow any particular rule. Thus it’s easy to hide various kinds
of data as fake image values.

This also works in PDF objects, where lossy compression such as JBIG2, CCITT Fax, and JPEG2000
can be used to embed malicious scripts. These are picture formats, but nothing prevents us from hiding

21http://web.mit.edu/puzzle/www/2015/puzzle/image/

30

Figure 12: Artistic, Valid QR Codes

Figure 13: Barcode–in–Barcode Inceptions

other types of information in them. PDF doesn’t enforce these encodings to be specifically used on objects
referenced as images, but allows them on any object, even JavaScript ones.

Moreover, image dimensions and depth are typically defined in the header, which tells in advance how
much pixel data is required, and appending any extra data within the pixel stream—such as in the IDAT
chunk of a PNG, which is Zlib-wrapped–will not trigger any problem with viewers. All the original pixels
are present, so the image is perfect, and the extra appended data in the pixel stream remains. This can be
used to hide data in a PNG picture without any obvious appended data after the IEND chunk.

Abusing Image Parsing

In some specific cases, such as barcodes, images are parsed after rendering. Even in extreme cases of barcode
manipulation, it’s still quite easy to see that they could be parsed as barcodes. The examples in Figure 12
come from a SIGGRAPH Asia 2013 paper by fine folks at the City College of London on Half-Tone QR
Codes. 22

However, we usually have no control over the scanning software. This software determines which types
of barcodes will be scanned, and in which order they will be parsed. By relying on error code information
recovery – and putting a different kind of barcode inside another one! – QR Inception is not only possible,
but was thoroughly investigated by the fine folks at SBA Research in Vienna!23 Some quick examples are in
Figure 13.

Corrupting Data to Prevent Standard Extraction

Although many parsers may refuse to extract a corrupted stream, it’s possible that some will parse until
corruption is found and attempt to use the undamaged portion. By appending garbage data and corrupting

22http://vecg.cs.ucl.ac.uk/Projects/SmartGeometry/halftone_QR/halftoneQR_sigga13.html
23unzip pocorgtfo07.pdf abusing_file_formats/qrinception.pdf #by Dabrowski et al

31

Figure 14: ASCII Zlib Stream

Figure 15: JPEG-Encoded JavaScript

its encoding, we can create a stream that still contains its information, but will not be extracted by purist
tools!

Appending garbage, compressing, then truncating the last compressed block is a straightforward way
to do this with Zlib and Deflate. Using LZMA without End of Stream markers also works. As mentioned
before, you also get the same result by corrupting the CRC32 of a JAR. Most if not all ZIP extractors will
fail to open the archive, whereas Java itself will ignore and execute the classes just fine.

In a similar but a bit more unpredictable way, it looks like most Windows viewers open a PNG file with
corrupted checksums in critical chunks just fine. Most Linux viewers reject the file completely.

Abusing Encoding to Bypass Filter

ASCII Zlib Stream As Gabor Molnar proved with ascii-zip,24 it’s possible to turn the Huffman coding
used in Zlib into an ASCII-only expansion, and thus send a Zlib-compressed binary as a standard ASCII
string. An ASCII gzip file using this trick is shown in Figure 14.

Michele Spagnuolo used this same trick in the better-known RosettaFlash attack, the details of which
you can find in PoC‖GTFO 5:11.

Lossless JPEG We can abuse JPEG’s lossy compression and turn it lossless. Since it’s lossy by definition,
it makes sense to expect that it cannot be controlled, so it is often ignored by security software. But,
by encoding a greyscale JPEG, chrominance and luminance separation is fully predictable, as there is no
more chrominance. Combining this with either 100% quality compression or a specific quantization matrix
allows the decompressed data to be predictable and reusable! Dénes Óvári demonstrated PoC of this in
VirusBulletin 2015/03,25 and an example of the technique is shown in Figure 15.

Altering Data to Contain Extra Information

Image and Sound When sound is stored as 32–bit PCM, the 16 lower bits can be modified without much
effect on the final sound as 16–bit resolution allows for a comfortable dynamic range of about 96 dB.

The BMP file format allows us to define both which color channels are stored, and on how many bits
those channels are stored. Thus, it’s possible to store a 16–bit picture as 32–bit words, leaving 16 bits of
each word unused! By combining these two techniques, we can mix picture and sound on the same words:
16 bits of audible sound, 16 bits of visible pixel colors. The sound is ignored for the picture, and the image
drops below the threshold of hearing.

24https://github.com/molnarg/ascii-zip
25unzip pocorgtfo07.pdf abusing_file_formats/vb201503-lossy.pdf

32

Figure 16: BMP Image with Another Image as RGB Channels in PCM Audio

Figure 17: Two Sound Files Combined, with Spectral Images

And if you’re cheeky, you can encode another picture in sound, that will be visible via spectrogram view.
Or encode some actual sound, with a banner picture encoded in the higher frequencies; this way, the sound
is still worth listening to yet also a thin picture is visible in the spectrogram view.26

Sound and Sound Not only can you combine a BMP and PCM together, you can also encode two different
sound signals together by using different endianness and allowing the unchosen signal to drop beneath the
noise floor.27

Figure 17 demonstrates a single file whose spectrogram is one image as big endian and a different image
as little endian. Note that the text in the left interpretation is in inaudibly high frequencies, so it can
peacefully coexist with music or speech in the lower frequencies.

Two Kinds of Schizophrenic PNGs In a similar way, by altering the Red/Green/Blue channels of each
pixel, one gets a similar image but with extra information.

In naive steganography, this is often used to encode external data on the least significant bits, but we
can also use this to encode one image within another image and create a schizophrenic picture!

Paletted image formats typically don’t require that each color in the palette be unique. By duplicating
the same sixteen colors over a 256–color palette, one can show the same image, but with extra information
stored by whatever copy of the palette index is used. (Original idea by Dominique Bongard, re-implemented
with Philippe Teuwen.)

26http://wiki.yobi.be/wiki/BMP_PCM_polyglot
27http://wiki.yobi.be/wiki/WAV_and_soft-boiled_eggs

33

Figure 18: PNG with both Palette and RGB images from the Same Data

By combining both the redundant palette trick and the altered RGB components trick, we can store two
images. One image appears when the palette is taken into account, and the other appears when the palette
is ignored, and the raw RGB displayed.28 Note that although an RGB picture with an extra palette isn’t
necessarily against the specs, there doesn’t seem to be any legitimate example in the wild. (Perhaps this
could be used to suggest which color to use to render on limited hardware?) As a bonus, the palette can
contain itself a third image.

A related technique involves storing two 16–color pictures in the same data by illegally including two
palettes. A PNG file having two palettes is against the specifications, but many viewers tolerate it. Some
parsers take the first palette into account, and some the last, which leads to two different pictures from the
same pixel information. This is shown in Figure 19, but unfortunately, most readers just reject the file.
(Screenshot by Thijs Bosschert.)

6.6 Schizophrenia

Semi-Constance

Constant Obstacles Make People Take Shortcuts. If most implementations use the same default
value, then some developer might just use this value directly hardcoded. If a majority of developers do
the same, then the variable aspect of the value would break compatibility too often, forcing the value to
be constant, equal to its default. Already in DOS time, the keyboard buffer was supposed to be variable-
sized(29). It had a default start and size (40:1E, and 32 bytes), but you were supposed to be able to set a
different head and tail via (40:1A and 40:1C). However, most people just hardcoded 40:1E, so the parameters
for head and tail became not usable.

BMP Data Pointer A BMP’s header contains a pointer to image data. However, most of the time, the
image data strictly follows the headers and starts at offset 0x36. Consequently, some viewers just ignore that
pointer and just incorrectly display the data at offset 0x36 without paying attention to the header length.

So, if you put two sets of data, one at the usual place, and one farther in the file, pointed at from the
header, two readers may give different results. This trick comes from Gynvael Coldwind.

Unbalanced Nested Markers

It’s a well known fact that Web browsers don’t enforce HTML markers correctly. A file containing only
ac will show a bold “c” despite the lack of <html> and <body> tags.

28http://wiki.yobi.be/wiki/PNG_Merge
29http://stanislavs.org/helppc/bios_data_area.html

34

Figure 19: Schizophrenic PNG via Double Palettes, in Encase Forensic v7

Figure 20: Schizophrenic BMP with Non-Default Data Pointer

35

Figure 21: One PDF, Two Interpretations

Figure 22: Schizophrenic PDF by Closed String Object (endobj)

In file formats with nested markers, ending these markers earlier than expected can have strange and
lovely consequences.

For example, PDF files are made of objects. An object is required to end with endobj. Some of these
objects contain a stream, which is required to end with endstream. As the stream is contained within the
object, endstream is expected to always come first, and then endobj.

In theory, a stream can contain the keyword endobj, and that should not affect anything. However, in
case some PDF generators should forget to close the stream before the object, it makes sense for a parser to
close the object even if the stream hasn’t been closed yet. Since this behavior is optional, different readers
implement it in different ways.

This can be abused by creating a document that contains an object with a premature endobj. This
sometimes confuses the parser by cloaking an extra root element different from the one defined in the trailer,
as illustrated by Figure 21. Such a file will be displayed as a totally different document, depending upon the
reader. Figure 22 shows such a schizophrenic PDF.

36

Figure 23: Apple II & PDF Polyglot

6.7 Icing on the Cake

After modifying a file, there are checksums and other limitations that must be observed. As with any other
rule, there are exceptions, which we’ll cover.

ZIP CRC32 Most extractors enforce a ZIP file’s checksums, but for some reason Java does not when
reading JAR files. By corrupting the checksums of files within a JAR, you can make that JAR difficult to
extract by standard ZIP tools.

PNG CRC32 PNG also contains CRC32 checksums of its data. Although some viewers for Unix demand
correct checksums, they are nearly never required on Windows. No warnings, no nothin’.

TAR Checksum Tar checksums aren’t complicated, but the algorithm is so old–timey that it warms the
heart just a little.

Truecrypt Header A Truecrypt disk’s header is encrypted according to the chosen algorithm, password,
and keyfile. Prior to the header, the disk begins with a random 64–byte salt, allowing for easy manipulation
of headers. See my article on Truecrypt, PoC‖GTFO 4:11, for a PDF/ZIP/Truecrypt polyglot.

6.8 Size Limitation

It’s common that ROM and disk images require a specific rounded size, and there is often no workaround to
this. You can merge a PDF and an Apple II floppy image, but only if the PDF fits in the 143360–byte disk
image.

If you need a bigger size, you can try with hard disk images for the same system, if they exist. In this
case, you can put them on a two megabyte hard disk image, with partitioning as required. Thanks to Peter
Ferrie for his help with this technique, which was used to produce the polyglot in Figure 23. Shown in that
figure is an Apple II disk image of Prince of Persia that doubles as a PDF.

37

6.9 Challenges

Limitations of Standard Libraries Because most libraries don’t give you full control over the file
structure, abusing file formats is not always easy.

You may want to open the file and just modify one chunk, but the library—too smart for its britches—
removed your dummy chunk, recompressed your intentionally uncompressed data, optimized the colors of
your palette, and ruined other carefully chosen options. In the end, such unconventional proofs of concept
are often easier to generate with a small script made from scratch rather than relying on a well-known
bulletproof library.

Normalization To make your scripts more efficient, it might be worth finding a good normalizer program
for the filetype you’re abusing. There are lots of good programs and libraries that will not modify your file
in depth, but produce a relatively predictable structure.

For PDF, running mutool clean is a good way to sand off any rough edges in your polyglot. It modifies
very little, yet rebuilds the XREF table and adjusts objects lengths, which turns your hand-made tolerated
PDF into one that looks perfectly standard.

For PNG, advpng -z -0 is a good way to produce an uncompressed image with no line filters.

For ZIP, TorrentZip is a good way to consistently produce the exact same archive file. AdvDef is a good
way to (de)compress Zlib chunks without altering the rest of the file in any way. For example, when used
on PNGs, no PNG structure is analyzed, and just the IDAT chunks are processed.

Normalizing the content data’s range is sometimes useful, too. A sound or image that consumes its entire
dynamic range leaves more room for hidden data in the lower bits.

Compatibility

If your focus is still on getting decent compatibility, you may pull your hair a lot. The problem is not just
the limit between valid and invalid files; rather, it’s the difference between the parser thinking “Hey this is
good enough.” and “Hey, this looks corrupted so let’s try to recover what I can.”

This leads to bugs that are infuriatingly difficult to solve. For example, a single font in a PDF might
become corrupted. One image—and only one image!–might go missing. A seemingly trivial polyglot then
becomes a race against heisenbugs, where it can be very difficult to get a good compatibility rate.

Automated Generation

Although it’s possible to alter a generated file, it might be handy to make a file generator directly integrate
foreign data. This way, the foreign data will be integrated reproducibly, whereas the rest of the structure is
already one hundred percent standard.

Archives Archiving a file without any compression usually stores it as is. Please note, however, that some
archive formats will escape data in order to prevent stored data from interfering with the outer format.

PDFLATEX PDFLATEX has special commands to create an uncompressed stream object, directly from an
external file. This is extremely useful, and totally reliable, no matter the size of the file. This way, you can
easily embed any data in your PDF.

\begingroup
2 \ pd f compre s s l eve l=0\relax

\immediate\ pdfobj stream
4 f i l e { foo . bin }

\endgroup

38

Figure 24: a PDFLATEX/PDF quine

A PDFLATEX/PDF Polyglot If your document’s source is a single .tex file, then you can make a
PDFLATEX quine. This file is simultaneously its own TEX source code and the resulting PDF from compi-
lation. If your document is made of multiple files, then you can archive those files to bundle them in the
PDF.

You can also do it the other way around. For his Zeronights 2014 keynote, Is infosec a game?, Solar
Designer created an actual point and click adventure to walk through the presentation.30

It would be a shame if such a masterpiece were lost, so he made his own walkthrough as screenshots, put
together as a slideshow in a PDF, in which the ZIP containing the game is attached. This way, it’s preserved
as a single file, containing an easy preview of the talk itself and the original presentation material.

Embedding a ZIP in a PDF However, if you embed a ZIP in a PDF as a simple PDF object, it’s
possible that the ZIP footer will be too far from the end of the file. Objects are stored before the Cross
Reference table, which typically grows linearly with the number of objects in the PDF. When this happens,
ZIP tools might fail to see the ZIP.

A good way to embed a ZIP in a PDF, as Julia Wolf showed us with napkins in PoC‖GTFO 1:5, is to
create a fake stream object after the xref, where the trailer object is present, before the startxref pointer.
The official specifications don’t specify that no extra object should be present. Since the trailer object itself
is just a dictionary, it uses mostly the same syntax as any other PDF objects, and all parsers tolerate an
extra object present within this area.

1. PDF Signature

2. PDF Objects

3. Cross Reference Table

4. (extra stream object declaration)

• ZIP Archive

5. Trailer Object

6. startxref Pointer

30http://www.openwall.com/presentations/ZeroNights2014-Is-Infosec-A-Game/

39

This gives a fully compatible PDF, with no need for pointer or length adjustment. It’s also a straight-
forward way for academics to bundle source code and PoCs.

Appended Data If for some reason you need the ZIP at the exact bottom of the file, e.g. to maintain
compatibility with Python’s EGG format, then you can extend the ZIP footer’s comment to cover the last
bytes of the PDF. This footer, called the End of Central Directory, starts with P K 05 06 and ends with a
variable length comment. The length is at offset 20, then the comment itself starts at offset 22.

If the ZIP is too far from the bottom of the file, then this operation is not possible as the comment
would be longer than 65536 bytes. Instead, to increase compatibility, one can duplicate the End of Central
Directory. I describe this trick in PoC‖GTFO 4:11, where it was used to produce a Truecrypt/PDF/ZIP
polyglot.

Combined with the trailing space trick explained earlier, one can insert an actual null-terminated string
before the extraneous data so ZIP parsers will display a proper comment instead of some garbage!

Fixing Absolute Pointers When an unmodified ZIP is inserted into a PDF, the pointers inside the ZIP’s
structures are only valid relative to the start of the archive. They are not correct as seen from the file itself.

Some tools consider such a file to be damaged, with garbage to ignore, but some might refuse to parse it
with incorrect addresses. To fix this, adjust the relative offset of local header pointers in the Central
Directory’s entries. You might also ask a ZIP tool to repair the file, and cross your fingers that your tool
will not alter anything else in the file by reordering files or removing slack space.

6.10 Thoughts

Polyglots Polyglot files may sound like a great idea for production. For example, you can keep the original
(custom format) source file of a document embedded in a file that can be seen as a preview in a standard
format. To quickly sort your SVG files, just ZIP them individually and append them to a PNG showing the
preview.

As mentioned previously, ZIP your .tex files and embed them in the final PDF. This already exists in
some cases, such as OpenOffice’s ability to export PDF files that contain the original .odt file internally.

A possible further use of polyglots would be to bundle different outputs of the same file in two different
formats. PDF and EPUB could be combined for e-book distribution, or a installer could be used for both
Linux and Windows. Naturally, we could just ZIP these together and distribute the archive, but they won’t
be usable out of the box.

Archiving files together is much more natural than making a polyglot file. Although opening a polyglot
file may be transparent for the targeted software, it’s not a natural action for user.

There are also security risks associated with polyglot construction. For example, polyglots can be used
to exfiltrate data or bypass intrusion detection systems. Testing various polyglots on Encase showed that
nearly all of them were reported as a single file type, with no warnings whatsoever.

Offset Start I see no point in allowing a magic signature to be at any offset. If it’s for the sake of allowing
a comment early in the file, then the format itself should have an explicit comment chunk.

If it’s for the sake of bundling several file types together, then as mentioned previously, it could just be
specific to one application. There’s no need to waste parsing time in making it officially a part of one format.
I don’t see why a PE with ZIP in appended data should still be considered to be a standard ZIP; jumping
at the end of the PE’s physical size is not hard, neither is extracting a ZIP, so why does it sound normal
that it still works directly as a ZIP? If a user updates the contents of the archive, it’s quite possible that the
ZIP tool would re-create an entire archive without the initial PE data.

While it’s helpful to manually open WinZip/WinRar/7Z self–extracting archives, you still have to run a
dedicated tool for formats such as Nullsoft Installer and InnoSetup that have no standard tool. Sure, your
extraction tool could just look for data anywhere like Binwalk, but this exceptional case doesn’t justify the
fact that the format explicitly allows any starting offset.

40

This is likely why some modern tools take a different approach, ignoring the official structure of a ZIP.
These extractors start at offset zero and look for a sequence of Local File Headers. This method is faster
than the official bottom-up method of parsing, and it works fine for 99% of standard files out there.

Sadly, doing this differently makes ZIP schizophrenia possible, which can be critical as it can break
signatures and the complete chain of trust of a standard system.

And yet, how hard would it be to create a new, top-down, smaller Zlib-based archive format, one that
doesn’t contain obsolete fields such as number of volumes of the archive? One that doesn’t duplicate
file names between Central Directory and Local File Headers?

Enforcing Values File structures are like laws: when they are overly complicated and unnecessary, peo-
ple will ignore them. The PE file format now has tons of deprecated fields and structures, especially by
comparison to its long overdue sibling, the Terse Executable file format. TE is essentially the same format,
with a lot of obsolete fields removed.

From especially unclear specifications come diverging implementations, slightly different for each pro-
grammer’s interpretation. The ZIP specifications31 don’t even specify the names of the various fields in the
structures, only a long description for each of them, such as compression method! Once enough diverging
implementations survive, then hard reality merges them into an ugly de facto standard. We end up with
tools that are forced to recover half-broken files rather than strictly accepting what’s okay. They give us
mere warnings when the input is unclear, rather than rejecting what’s against the rules.

6.11 Conclusion

Let me know if I forgot anything. Suggestions and corrections are more than welcome! I hope this gives you
ideas, that it makes you want to explore further. Our attentive readers will notice that compressions and
file systems are poorly represented—except for the amazing MIT Mystery Hunt image—and indeed, that’s
what I will explore next.

Some people accuse these file format tricks of being pointless shenanigans, which is true! These tricks
are useless, but only until someone uses one of them to bypass a security layer. At that point everyone will
acknowledge that they were worth knowing before, but by then it’s too late. It’s better to know in advance
about potential risks than judge blindly that ‘nobody was ever pwned with such a trick’.

As a closing note, don’t forget the two great mantras of research and security. First, to stay safe, don’t do
anything. Second, to make nifty new discoveries, try everything!

31https://pkware.cachefly.net/webdocs/APPNOTE/APPNOTE-6.3.3.TXT

41

7 Extending crypto-related backdoors to other scenarios

by BSDaemon and Pirata

This article expands on the ideas introduced by Taylor Hornby’s “Prototyping an RDRAND Backdoor
in Bochs” in PoC‖GTFO 3:6. That article demonstrated the dangers of using instructions that generate a
#VMEXIT event while in a guest virtual machine. Because a malicious VMM could compromise the randomness
returned to a guest VM, it can affect the security of cryptographic operations.

In this article, we demonstrate that the newly available AES-NI instruction extensions in Intel platforms
are vulnerable to a similar attack, with some additional badness. Not only guest VMs are vulnerable, but
normal user-level/kernel-level applications that leverage the new instruction set are vulnerable as well, unless
proper measures are in place. The reason for that is due to a mostly unknown feature of the platform, the
ability to disable this instruction set.

7.1 Introduction

From Intel’s website,32:

Intel AES-NI is a new encryption instruction set that improves on the Advanced Encryption
Standard (AES) algorithm and accelerates the encryption of data in the Intel Xeon processor
family and the Intel Core processor family.

The instruction has been available since 2010.33

Starting in 2010 with the Intel Core processor family based on the 32nm Intel micro-architecture,
Intel introduced a set of new AES (Advanced Encryption Standard) instructions. This processor
launch brought seven new instructions. As security is a crucial part of our computing lives,
Intel has continued this trend and in 2012 and [sic] has launched the 3rd Generation Intel Core
Processors, codenamed Ivy Bridge. Moving forward, 2014 Intel micro-architecture code name
Broadwell will support the RDSEED instruction.

On a Linux box, a simple grep would tell if the instruction is supported in your machine.

1 bsdaemon@bsdaemon . org :~# grep aes /proc/cpuinfo
f l a g s : fpu vme de pse t s c msr pae mce cx8 ap ic sep mtrr pge mca cmov

3 pat pse36 c l f l u s h dts acp i mmx f x s r s s e s s e2 s s ht tm pbe s y s c a l l nx rdtscp lm
constant_tsc arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc

5 aper fmper f eager fpu pni pclmulqdq dtes64 monitor ds_cpl vmx smx e s t tm2 s s s e 3
cx16 xtpr pdcm pcid sse4_1 sse4_2 x2apic popcnt tsc_deadl ine_timer aes xsave avx

7 f16c rdrand lahf_lm ida arat epb xsaveopt pln pts dtherm tpr_shadow vnmi
f l e x p r i o r i t y ept vpid f s g sba s e smep erms

A little-known fact, though, is that the instruction set can be disabled using an internal MSR on the
processor. It came to our attention while we were looking at BIOS update issues and saw a post about a
machine with AES-NI showing as disabled even though it was in, fact, supported.34

Researching the topic, we came across the MSR for a Broadwell Platform: 0x13C. It will vary for each
processor generation, but it is the same in Haswell and SandyBridge, according to our tests. Our machine
had it locked.

MSR 0x13C
2 Bit Desc r ip t i on

0 Lock b i t (always unlocked on boot time , BIOS s e t s i t)
4 1 Not de f ined by de fau l t , 1 w i l l d i s ab l e AES−NI

2−32 Not sure what i t does , not touched by our BIOS (probably r e s e rved)

Discussing attack possibilities with a friend in another scenario—related to breaking a sandbox-like feature
in the processor—we came to the idea of using it for a rootkit.

32http://www.intel.com/content/www/us/en/architecture-and-technology/advanced-encryption-standard–aes-/data-

protection-aes-general-technology.html
33https://software.intel.com/en-us/node/256280.
34“AES-NI shows Disabled”, http://en.community.dell.com/support-forums/servers/f/956/t/19509653

42

7.2 The Idea

All the code that we saw that supports AES-NI is basically about checking if it is supported by the processor,
via CPUID, including the reference implementations on Intel’s website. That’s why we considered the
possibility of manipulating encryption in applications by disabling the extension and emulating its expected
results. Not long after we had that thought, we read in the PoC‖GTFO 3:6 about RDRAND.

If the disable bit is set, the AES-NI instructions will return #UD (Invalid Opcode Exception) when issued.
Since the code checks for the AES-NI support during initialization instead of before each call, winning the
race is easy—it’s a classic TOCTOU.

Some BIOSes will set the lock bit, thus hard-enabling the set. A write to the locked MSR then causes a
general protection fault, so there are two possible approaches to dealing with this case.

First, we can set both the disable bit and the lock bit. The BIOS tries to enable the instruction, but that
write is ignored. The BIOS tries to lock it, but it is ignored. That works unless the BIOS checks if the write
to the MSR worked or not, which is usually not the case—in the BIOS we tested, the general protection
fault handler for the BIOS just resumed execution. For beating the BIOS to this punch, one could explore
the BIOS update feature, setting the TOP_SWAP bit, which let code execute before BIOS.35 Chipsec toolkit36

TOP_SWAP mechanism is locked.

For a Vulnerable Machine,

1 ### BIOS VERSION 65CN90WW
OS : u e f i

3 Chipset :
VID : 8086

5 DID : 0154
Name : Ivy Bridge (IVB)

7 Long Name : Ivy Bridge CPU / Panther Point PCH
[−] FAILED: BIOS I n t e r f a c e i n c l ud ing Top Swap Mode i s not locked

For a Protected Machine,

OS : Linux 3.2.0−4−686−pae #1 SMP Debian 3.2.65−1+deb7u2 i686
2 Platform : 4 th Generation Core Proces sor (Haswel l U/Y)

VID : 8086
4 DID : 0A04

CHIPSEC : 1 . 1 . 7
6 [∗] BIOS Top Swap mode i s d i s ab l ed

[∗] BUC = 0x00000000 << Backed Up Control (RCBA + 0x3414)
8 [0 0] TS = 0 << Top Swap

[∗] RTC ve r s i on o f TS = 0
10 [∗] GCS = 0x00000021 << General Control and Status (RCBA + 0x3410)

[0 0] BILD = 1 << BIOS In t e r f a c e Lock Down
12 [1 0] BBS = 0

14 [+] PASSED: BIOS I n t e r f a c e i s locked (i n c l ud ing Top Swap Mode)

The problem with this approach is that software has to check if the AES-NI is enabled or not, instead of
just assuming the platform supports it.

Second, we can NOP-out the BIOS code that locks the MSR. That works if BIOS modification is possible
on the platform, which is often the case. There are many options to reverse and patch your BIOS, but most
involve either modifying the contents of the SPI Flash chip or single-stepping with a JTAG debugger.

Because the CoreBoot folks have had all the fun there is with SPI Flash, and because folk wisdom says
that JTAG isn’t feasible on Intel, we decided to throw folk wisdom out the window and go the JTAG route.
We used the Intel JTAG debugger and an XDP 3 device. The algorithm used is provided in the attachment 3.

To be able to set this MSR, one needs Ring0 access, so this attack can be leveraged by a hypervisor
against a guest virtual machine, similar to the RDRAND attack. But what’s interesting in this case is that it
can also be leveraged by a Ring0 application against a hypervisor, guest, or any host application! We used
a Linux Kernel Module to intercept the #UD; a sample prototype of that module is in attachment 6.

35“Using SMM for other purposes”, Phrack 65:7
36https://github.com/chipsec/chipsec

43

7.3 Checking your system

You can use the Chipsec module that comes with this article to check if your system has the MSR locked.
Chipsec uses a kernel module that opens an interface (a device on Linux) for its user-mode component
(Python code) to request info on different elements of the platform, such as MSRs. Obviously, a kernel
module could do that directly. An example of such a module is provided with this article.

Since the MSR seems to change from system to system (and is not deeply documented by Intel itself),
we recommend searching your OEM BIOS vendor forums to try and guess what is that MSR’s number for
your platform if the value mentioned here doesn’t work. Disassembling your BIOS calls for the wrmsr might
also help. Some BIOSes offer the possibility of disabling the AES-NI set in the BIOS menu, thus making it
easier to identify the code (so dump the BIOS and diff). By default, the platform initializes with the disable
bit unset, i.e., with AES-NI enabled. In our case, the BIOS vendor only set the lock bit.

7.4 Conclusion

This article demonstrates the need for checking the platform as whole for security issues. We showed that
even “safe” software can be compromised, if the configuration of the platform’s elements is wrong (or not
ideal). Also note that forensics tools would likely fail to detect these kinds of attacks, since they typically
depend on the platform’s help to dissect software.

Acknowledgements

Neer Roggel for many excellent discussions on processor security and modern features, as well for the en-
lightening conversation about another attack based on disabling the AES-NI in the processor.

Attachment 1: Patch for Chipsec

This patch is for Chipsec (https://github.com/chipsec/chipsec) public repository version from March
9, 2015. A better (more complete) version of this patch will be incorporated into the public repository soon.

d i f f −rNup chipsec−master / source / t o o l / ch ip s e c / c f g /hsw . xml ch ipsec−master . new/ source / t oo l / ch ip s e c /
c f g /hsw . xml

2 −−− ch ipsec−master / source / t o o l / ch ip s e c / c f g /hsw . xml 2015−01−23 16 :07 :19 .000000000 −0800
+++ chipsec−master . new/ source / t oo l / ch ip s e c / c f g /hsw . xml 2015−03−09 19 :13 :55 .949498250 −0700

4 @@ −39,6 +39 ,10 @@
<!−− −−>

6 <!−− #################################### −−>
<r e g i s t e r s >

8 + <r e g i s t e r name="IA32_AES_NI" type="msr" msr="0x13c" desc="AES−NI Lock">
+ <f i e l d name="Lock" b i t ="0" s i z e ="1" desc="AES−NI Lock Bit " />

10 + <f i e l d name="AESDisable" b i t ="1" s i z e ="1" desc="AES−NI Disab le Bit (s e t to d i s ab l e) " />
+ </r e g i s t e r >

12 </r e g i s t e r s >

14 −</con f i gu ra t i on >
\ No newl ine at end o f f i l e

16 +</con f i gu ra t i on >
d i f f −rNup chipsec−master / source / t o o l / ch ip s e c /modules/hsw/aes_ni . py chipsec−master . new/ source / t oo l

/ ch ip s e c /modules/hsw/aes_ni . py
18 −−− ch ipsec−master / source / t o o l / ch ip s e c /modules/hsw/aes_ni . py 1969−12−31 16 :00 :00 .000000000 −0800

+++ chipsec−master . new/ source / t oo l / ch ip s e c /modules/hsw/aes_ni . py 2015−03−09 19 :22 :12 .693518998
−0700

20 @@ −0,0 +1 ,68 @@
+#CHIPSEC: Platform Secur i ty Assessment Framework

22 +#Copyright (c) 2010−2015 , I n t e l Corporat ion
+#

24 +#This program i s f r e e so f tware ; you can r e d i s t r i b u t e i t and/ or
+#modify i t under the terms o f the GNU General Publ ic L icense

26 +#as publ i shed by the Free Software Foundation ; Vers ion 2 .
+#

28 +#This program i s d i s t r i bu t e d in the hope that i t w i l l be use fu l ,
+#but WITHOUT ANY WARRANTY; without even the impl i ed warranty o f

30 +#MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+#GNU General Publ ic L icense f o r more d e t a i l s .

44

32 +#
+#You should have r e c e i v ed a copy o f the GNU General Publ ic L i cense

34 +#along with t h i s program ; i f not , wr i t e to the Free Software
+#Foundation , Inc . , 51 Frankl in Street , F i f th Floor , Boston , MA 02110−1301 , USA.

36 +#
+#Contact in fo rmat ion :

38 +#ch ip s e c@ in t e l . com
+#

40 +
+

42 +
+

44 +## \addtogroup modules
+# __chipsec/modules/hsw/aes_ni .py__ − checks f o r AES−NI lock

46 +#
+

48 +
+from ch ip s e c . module_common import ∗

50 +from ch ip s ec . ha l . msr import ∗

+
52 +TAGS = [MTAG_BIOS,MTAG_HWCONFIG]

+
54 +c l a s s aes_ni (BaseModule) :

+
56 + def __init__(s e l f) :

+ BaseModule . __init__(s e l f)
58 +

+ def is_supported (s e l f) :
60 + return True

+
62 + def check_aes_ni_supported (s e l f) :

+ return True
64 +

+ def check_aes_ni (s e l f) :
66 + s e l f . l o gg e r . s t a r t_te s t ("Checking i f AES−NI lock b i t i s s e t ")

+
68 + aes_msr = ch ip s e c . ch i p s e t . r ead_reg i s t e r (s e l f . cs , ’IA32_AES_NI ’)

+ ch ip s e c . ch i p s e t . p r i n t_r e g i s t e r (s e l f . cs , ’IA32_AES_NI ’ , aes_msr)
70 +

+ aes_msr_lock = aes_msr & 0x1
72 +

+ # We don ’ t r e a l l y care i f i t i s enabled or not s i n c e the so f tware needs to
74 + # t e s t − the only s e c u r i t y i s s u e i s i f i t i s not locked

+ aes_msr_disable = aes_msr & 0x2
76 +

+ # Check i f the lock i s not set , then ERROR
78 + i f (not aes_msr_lock) :

+ return False
80 +

+ return True
82 +

+ # −−

84 + # run (module_argv)
+ # Required func t i on : run here a l l t e s t s from th i s module

86 + # −−

+ def run (s e l f , module_argv) :
88 + return s e l f . check_aes_ni ()

Attachment 2: Kernel Module to check and set the AES-NI related MSRs

If for some reason you can’t use Chipsec, this Linux kernel module reads the MSR and checks if the AES-NI
lock bit is set.

#include <l inux /module . h>
2 #include <l inux / dev i ce . h>

#include <l inux /highmem . h>
4 #include <l inux / kal l syms . h>

#include <l inux / tty . h>
6 #include <l inux / ptrace . h>

#include <l inux / ve r s i on . h>
8 #include <l inux / s l ab . h>

#include <asm/ io . h>
10 #include "include/rop .h"

#include <l inux /smp . h>

45

12
#define _GNU_SOURCE

14
#define FEATURE_CONFIG_MSR 0x13c

16
MODULE_LICENSE("GPL") ;

18
#define MASK_LOCK_SET 0x00000001

20 #define MASK_AES_ENABLED 0x00000002
#define MASK_SET_LOCK 0x00000000

22
void ∗ read_msr_in_c (void ∗ CPUInfo)

24 {
int ∗ po in t e r ;

26 po in t e r=(int ∗) CPUInfo ;
asm volat i le ("rdmsr" : "=a" (po in t e r [0]) , "=d" (po in t e r [3]) : "c" (FEATURE_CONFIG_MSR)) ;

28 return NULL;
}

30
int __init

32 init_module (void)
{

34 int CPUInfo [4]={−1};

36 pr in tk (KERN_ALERT "AES−NI testing module\n") ;

38 read_msr_in_c (CPUInfo) ;

40 pr in tk (KERN_ALERT "read : %d %d from MSR: 0x%x \n" , CPUInfo [0] , CPUInfo [3] ,
FEATURE_CONFIG_MSR) ;

42 i f (CPUInfo [0] & MASK_LOCK_SET)
pr intk (KERN_ALERT "MSR: lock bit i s set\n") ;

44
i f (! (CPUInfo [0] & MASK_AES_ENABLED))

46 pr in tk (KERN_ALERT "MSR: AES_DISABLED bit i s NOT set − AES−NI i s ENABLED\n") ;

48 return 0 ;
}

50
void __exit

52 cleanup_module (void)
{

54 pr in tk (KERN_ALERT "AES−NI MSR unloading \n") ;
}

Attachment 3: In-target-probe (ITP) algorithm

Since we used an interface available only to Intel employees and OEM partners, we decided to at least provide
the algorithm behind what we did. We started with stopping the machine execution at the BIOS entrypoint.
We then defined some functions to be used through our code.

1 get_eip () : Get the cur rent RIP
get_cs () : Get the cur rent CS

3 get_ecx () : Get the cur rent value o f RCX
get_opcode () : Get the cur rent opcode (d i sassembly the cur r ent i n s t r u c t i o n)

5 find_wrmsr () : Uses the get_opcode () to compare with the ’300 f ’ (wrmsr opcode) and
return True i f found (Fal se i f not)

7 search_wrmsr () :
whi l e find_wrmsr () == False : s tep () −> go to the next i n s t r u c t i o n (s i ng l e −s tep)

9 f ind_aes () :
whi l e True :

11 step ()
search_wrmsr ()

13 i f get_ecx () == ’0000013 c ’ :
p r i n t "Found AES MSR"

15 break

Attachment 4: AES-NI Availability Test Code

This code uses the CPUID feature to see if AES-NI is available. If disabled, it will return “AES-NI Disabled”.
This is the reference code to be used by software during initialization to probe for the feature.

46

1 #include <std i o . h>

3 #define cpuid (l e v e l , a , b , c , d) \
asm("xchg{ l }\t{%%}ebx , %1\n\t" \

5 "cpuid\n\t" \
"xchg{ l }\t{%%}ebx , %1\n\t" \

7 : "=a" (a) , "=r" (b) , "=c" (c) , "=d" (d) \
: "0" (l e v e l))

9
int main (int argc , char ∗∗ argv) {

11 unsigned int eax , ebx , ecx , edx ;
cpuid (1 , eax , ebx , ecx , edx) ;

13 i f (ecx & (1<<25))
p r i n t f ("AES−NI Enabled\n") ;

15 else
p r i n t f ("AES−NI Disabled\n") ;

17 return 0 ;
}

Attachment 5: AES-NI Simple Assembly Code (to trigger the #UD)

This code will run normally (exit(0) call) if AES-NI is available and will cause a #UD if not.

Sect ion . t ext
2 g l oba l _start

4 _start :
mov ebx , 0

6 mov eax , 1
aesenc xmm7, xmm1

8 in t 0x80

Attachment 6: #UD hooking

There are many ways to implement this, as ‘Handling Interrupt Descriptor Table for fun and profit” in
Phrack 59:4 shows. Another option, however, is to use Kprobes and hook the function invalid_op().

#include <l inux /module . h>
2 #include <l inux / ke rne l . h>

4 int index = 0 ;
module_param(index , int , 0) ;

6
#define GET_FULL_ISR(low , high) (((uint32_t) (low)) | (((uint32_t) (high)) << 16))

8 #define GET_LOW_ISR(addr) ((uint16_t) (((uint32_t) (addr)) & 0x0000FFFF))
#define GET_HIGH_ISR(addr) ((uint16_t) (((uint32_t) (addr)) >> 16))

10
uint32_t o r i g ina l_hand l e r s [2 5 6] ;

12 uint16_t old_gs , old_fs , old_es , old_ds ;

14 typedef struct _idt_gate_desc {
uint16_t o f f s e t_low ;

16 uint16_t segment_se lector ;
uint8_t zero ; // zero + reserved

18 uint8_t f l a g s ;
uint16_t o f f s e t_h igh ;

20 } idt_gate_desc_t ;
idt_gate_desc_t ∗ gate s [2 5 6] ;

22
void handler_implemented (void) {

24 pr in tk (KERN_EMERG "IDT Hooked Handler\n") ;
}

26
void f oo (void) {

28 __asm__("push %eax") ; // p laceho lder for o r i g i na l handler

30 __asm__("pushw %gs") ;
__asm__("pushw %fs") ;

32 __asm__("pushw %es") ;
__asm__("pushw %ds") ;

34 __asm__("push %eax") ;

47

__asm__("push %ebp") ;
36 __asm__("push %edi") ;

__asm__("push %esi") ;
38 __asm__("push %edx") ;

__asm__("push %ecx") ;
40 __asm__("push %ebx") ;

42 __asm__("movw %0, %%ds" : : "m" (old_ds)) ;
__asm__("movw %0, %%es" : : "m" (old_es)) ;

44 __asm__("movw %0, %%fs" : : "m" (o ld_fs)) ;
__asm__("movw %0, %%gs" : : "m" (old_gs)) ;

46
handler_implemented () ;

48
// place o r i g i na l handler in i t s p laceho lder

50 __asm__("mov %0, %%eax" : : "m" (o r i g ina l_hand l e r s [index])) ;
__asm__("mov %eax , 0x24(%esp)") ;

52
__asm__("pop %ebx") ;

54 __asm__("pop %ecx") ;
__asm__("pop %edx") ;

56 __asm__("pop %esi") ;
__asm__("pop %edi") ;

58 __asm__("pop %ebp") ;
__asm__("pop %eax") ;

60 __asm__("popw %ds") ;
__asm__("popw %es") ;

62 __asm__("popw %fs") ;
__asm__("popw %gs") ;

64
// ensures tha t " re t " w i l l be the next in s t ruc t i on for the case

66 // compiler adds more in s t ruc t i on s in the ep i logue
__asm__("ret") ;

68 }

70 int init_module (void) {
// IDTR

72 unsigned char i d t r [6] ;
uint16_t id t_ l im i t ;

74 uint32_t idt_base_addr ;
int i ;

76
__asm__("mov %%gs , %0" : "=m" (old_gs)) ;

78 __asm__("mov %%fs , %0" : "=m" (o ld_fs)) ;
__asm__("mov %%es , %0" : "=m" (old_es)) ;

80 __asm__("mov %%ds , %0" : "=m" (old_ds)) ;

82 __asm__("sidt %0" : "=m" (i d t r)) ;
i d t_ l im i t = ∗ ((uint16_t ∗) i d t r) ;

84 idt_base_addr = ∗ ((uint32_t ∗)&i d t r [2]) ;
p r in tk ("IDT Base Address : 0x%x, IDT Limit : 0x%x\n" , idt_base_addr , id t_ l im i t) ;

86
gate s [0] = (idt_gate_desc_t ∗) (idt_base_addr) ;

88 for (i = 1 ; i < 256 ; i++)
gate s [i] = gate s [i − 1] + 1 ;

90
pr in tk ("int %d entry addr %x, seg se l %x, f lags %x, of f set %x\n" , index , gate s [index] , (

uint32_t) gate s [index]−>segment_selector , (uint32_t) gate s [index]−>f l a g s , GET_FULL_ISR(gate s [
index]−>offset_low , gate s [index]−>of f s e t_h igh)) ;

92
for (i = 0 ; i < 256 ; i++)

94 o r i g ina l_hand l e r s [i] = GET_FULL_ISR(gate s [i]−>offset_low , gate s [i]−>of f s e t_h igh) ;

96 gate s [index]−>of f se t_low = GET_LOW_ISR(&foo) ;
gate s [index]−>of f s e t_h igh = GET_HIGH_ISR(&foo) ;

98
return 0 ;

100 }

102 void cleanup_module (void) {
pr in tk ("cleanup entry %d\n" , index) ;

104
gate s [index]−>of f se t_low = GET_LOW_ISR(o r i g ina l_hand l e r s [index]) ;

106 gate s [index]−>of f s e t_h igh = GET_HIGH_ISR(o r i g ina l_hand l e r s [index]) ;
}

48

8 Innovations with Linux core files for advanced process forensics

by Ryan O’Neill,
who also publishes as Elfmaster

8.1 Introduction

It has been some time since I’ve seen any really innovative steps forward in process memory forensics. It
remains a somewhat arcane topic, and is understood neither widely nor in great depth. In this article I will
try to remedy that, and will assume that the readers already have some background knowledge of Linux
process memory forensics and the ELF format.

Many of us have been frustrated by the near-uselessness of Linux (ELF) core files for forensics analysis.
Indeed, these files are only useful for debugging, and only if you also have the original executable that the
core file was dumped from during crash time. There are some exceptions such as /proc/kcore for kernel
forensics, but even /proc/kcore could use a face-lift. Here I present ECFS, a technology I have designed to
remedy these drawbacks.

8.2 Synopsis

ECFS (Extended core file snapshots) is a custom Linux core dump handler and snapshot utility. It can be
used to plug directly into the core dump handler by using the IPC functionality available by passing the
pipe ‘|’ symbol in the /proc/sys/kernel/core_pattern. ECFS can also be used to take an ecfs-snapshot of
a process without killing the process, as is often desirable in automated forensics analysis for whole-system
process scanning. In this paper, I showcase ECFS in a series of examples as a means of demonstrating its
capabilities. I hope to convince you how useful these capabilities will be in modern forensics analysis of
Linux process images—which should speak to all forms of binary and process-memory malware analysis. My
hope is that ECFS will help revolutionize automated detection of process memory anomalies.

ECFS creates files that are backward-compatible with regular core files but are also prolific in new
features, including section headers (which core files do not have) and many new section headers and section
header types. ECFS includes full symbol table reconstruction for both .dynsym and .symtab symbol tables.
Regular core files do not have section headers or symbol tables (and rely on having the original executable for
such things), whereas an ecfs-core contains everything a forensics analyst would ever want, in one package.

Since the object and readelf output of an ecfs-core file is huge, let us examine a simple ecfs-core for a
64-bit ELF program named host. The process for host will show some signs of virus memory infection or
backdooring, which ECFS will help bring to light.

The following command will set up the kernel core handler so that it pipes core files into the stdin of our
core–to–ecfs conversion program named ecfs.

echo ’ |/opt/ecfs/bin/ecfs −i −e %e −p %p −o /opt/ecfs/cores/%e.%p ’ > /proc/ sys / ke rne l /
core_pattern

Next, let’s get the kernel to dump an ecfs file of the process for host, and then begin analyzing this file.

1 $ k i l l −11 ‘ p ido f host ‘

8.3 Section header reconstruction example

1 $ r e a d e l f −S /opt/ e c f s / co r e s / host .10710

49

There are 40 section headers, starting at offset 0x23fff0:

1 Sect ion Headers :
[Nr] Name Type Address Offset

3 Size EntSize Flags Link In fo Align
[0] NULL 0000000000000000 00000000

5 0000000000000000 0000000000000000 0 0 0
[1] . i n t e r p PROGBITS 0000000000400238 00002238

7 000000000000001 c 0000000000000000 A 0 0 1
[2] . no t e NOTE 0000000000000000 000004 a0

9 0000000000000bd8 0000000000000000 A 0 0 4
[3] .hash GNU_HASH 0000000000400298 00002298

11 000000000000001 c 0000000000000000 A 0 0 4
[4] .dynsym DYNSYM 00000000004002b8 000022b8

13 00000000000000 a8 0000000000000018 A 5 0 8
[5] . dyn s t r STRTAB 0000000000400360 00002360

15 0000000000000050 0000000000000018 A 0 0 1
[6] . r e l a . d y n RELA 00000000004003 e0 000023 e0

17 0000000000000018 0000000000000018 A 4 0 8
[7] . r e l a . p l t RELA 00000000004003 f8 000023 f8

19 0000000000000090 0000000000000018 A 4 0 8
[8] . i n i t PROGBITS 0000000000400488 00002488

21 000000000000001a 0000000000000000 AX 0 0 8
[9] . p l t PROGBITS 00000000004004b0 000024b0

23 0000000000000070 0000000000000010 AX 0 0 16
[1 0] . t e x t PROGBITS 0000000000400000 00002000

25 0000000000001000 0000000000000000 AX 0 0 16
[1 1] . f i n i PROGBITS 0000000000400724 00002724

27 0000000000000009 0000000000000000 AX 0 0 16
[1 2] .eh_frame_hdr PROGBITS 0000000000400758 00002758

29 0000000000000034 0000000000000000 AX 0 0 4
[1 3] .eh_frame PROGBITS 000000000040078 c 00002790

31 00000000000000 f4 0000000000000000 AX 0 0 8
[1 4] .dynamic DYNAMIC 0000000000600 e28 00003 e28

33 00000000000001d0 0000000000000010 WA 0 0 8
[1 5] . g o t . p l t PROGBITS 0000000000601000 00004000

35 0000000000000050 0000000000000008 WA 0 0 8
[1 6] .data PROGBITS 0000000000600000 00003000

37 0000000000001000 0000000000000000 WA 0 0 8
[1 7] . b s s PROGBITS 0000000000601058 00004058

39 0000000000000008 0000000000000000 WA 0 0 8
[1 8] .heap PROGBITS 000000000093 b000 00005000

41 0000000000021000 0000000000000000 WA 0 0 8
[1 9] ld−2 . 1 9 . s o . t e x t SHLIB 0000003000000000 00026000

43 0000000000023000 0000000000000000 A 0 0 8
[2 0] ld−2 . 1 9 . s o . r e l r o SHLIB 0000003000222000 00049000

45 0000000000001000 0000000000000000 A 0 0 8
[2 1] ld−2 . 1 9 . s o . d a t a . 0 SHLIB 0000003000223000 0004 a000

47 0000000000001000 0000000000000000 A 0 0 8
[2 2] l i b c −2 . 1 9 . s o . t e x t SHLIB 0000003001000000 0004 c000

49 00000000001bb000 0000000000000000 A 0 0 8
[2 3] l i b c −2. 1 9 . s o . unde SHLIB 00000030011bb000 00207000

51 0000000000200000 0000000000000000 A 0 0 8
[2 4] l i b c −2 . 1 9 . s o . r e l r SHLIB 00000030013bb000 00207000

53 0000000000004000 0000000000000000 A 0 0 8
[2 5] l i b c −2 . 1 9 . s o . d a t a SHLIB 00000030013 bf000 0020b000

55 0000000000002000 0000000000000000 A 0 0 8
[2 6] e v i l _ l i b . s o . t e x t INJECTED 00007 fb0358c3000 00215000

57 0000000000002000 0000000000000000 A 0 0 8
[2 7] . p r s t a t u s PROGBITS 0000000000000000 0023 f000

59 0000000000000150 0000000000000150 0 0 4
[2 8] . f d i n f o PROGBITS 0000000000000000 0023 f150

61 0000000000000 c78 0000000000000214 0 0 4
[2 9] . s i g i n f o PROGBITS 0000000000000000 0023 fdc8

63 0000000000000080 0000000000000080 0 0 4
[3 0] . auxvec to r PROGBITS 0000000000000000 0023 f e48

65 0000000000000130 0000000000000008 0 0 8
[3 1] . exepath PROGBITS 0000000000000000 0023 f f 7 8

67 0000000000000024 0000000000000008 0 0 1
[3 2] . p e r s o n a l i t y PROGBITS 0000000000000000 0023 f f 9 c

69 0000000000000004 0000000000000004 0 0 1
[3 3] . a r g l i s t PROGBITS 0000000000000000 0023 f f a 0

71 0000000000000050 0000000000000001 0 0 1
[3 4] .stack PROGBITS 00007 f f f 51d82000 00000000

73 0000000000021000 0000000000000000 WA 0 0 8
[3 5] .vdso PROGBITS 00007 f f f 5 1 d f e 0 0 0 0023 c000

75 0000000000002000 0000000000000000 WA 0 0 8

50

[3 6] . v s y s c a l l PROGBITS f f f f f f f f f f 6 0 0 0 0 0 0023 e000
77 0000000000001000 0000000000000000 WA 0 0 8

[3 7] .symtab SYMTAB 0000000000000000 00240b81
79 0000000000000078 0000000000000018 38 0 4

[3 8] . s t r t a b STRTAB 0000000000000000 00240 bf9
81 0000000000000037 0000000000000000 0 0 1

[3 9] . s h s t r t a b STRTAB 0000000000000000 002409 f0
83 0000000000000191 0000000000000000 0 0 1

As you can see, there are even more section headers in our ecfs-core file than in the original executable
itself. This means that you can disassemble a complete process image with simple tools that rely on section
headers such as objdump! Also, please note this file is entirely usable as a regular core file; the only change
you must make to it is to mark it from ET_NONE to ET_CORE in the initial ELF file header. The reason it
is marked as ET_NONE is that objdump would know to utilize the section headers instead of the program
headers.

1 $ t o o l s / e t_ f l i p host .107170 <− this command f l i p s e_type from ET_NONE to ET_CORE (And v i c e versa)
$ gdb −q host host .107170

3 [New LWP 10710]
Core was generated by ‘ e c f s_ t e s t s / host ’ .

5 Program terminated with signal SIGSEGV, Segmentation fau l t .
#0 0x00007fb0358c375a in ?? ()

7 (gdb) bt
#0 0x00007fb0358c375a in ?? ()

9 #1 0x00007fff51da1580 in ?? ()
#2 0x00007fb0358c3790 in ?? ()

11 #3 0x0000000000000000 in ?? ()

For the remainder of this paper we will not be using traditional core file functionality. However, it is
important to know that it’s still available.

So what new sections do we see that have never existed in traditional ELF files? Well, we have sections
for important memory segments from the process that can be navigated by name with section headers. Much
easier than having to figure out which program header corresponds to which mapping!

1 [1 8] .heap PROGBITS 000000000093 b000 00005000
0000000000021000 0000000000000000 WA 0 0 8

3 [3 4] .stack PROGBITS 00007 f f f 51d82000 00000000
0000000000021000 0000000000000000 WA 0 0 8

5 [3 5] .vdso PROGBITS 00007 f f f 5 1 d f e 0 0 0 0023 c000
0000000000002000 0000000000000000 WA 0 0 8

7 [3 6] . v s y s c a l l PROGBITS f f f f f f f f f f 6 0 0 0 0 0 0023 e000
0000000000001000 0000000000000000 WA 0 0 8

Also notice that there are section headers for every mapping of each shared library. For instance, the
dynamic linker is mapped in as it usually is:

[1 9] ld−2 . 1 9 . s o . t e x t SHLIB 0000003000000000 00026000
2 0000000000023000 0000000000000000 A 0 0 8

[2 0] ld−2 . 1 9 . s o . r e l r o SHLIB 0000003000222000 00049000
4 0000000000001000 0000000000000000 A 0 0 8

[2 1] ld−2 . 1 9 . s o . d a t a . 0 SHLIB 0000003000223000 0004 a000
6 0000000000001000 0000000000000000 A 0 0 8

Also notice the section type is SHLIB. This was a reserved type specified in the ELF man pages that is
never used, so I thought this to be the perfect opportunity for it to see some action. Notice how each part
of the shared library is given its own section header: <lib>.text for the code segment, <lib>.relro for
the read-only page to help protect against .got.plt and .dtors overwrites, and <lib>.data for the data
segment.

51

Another important thing to note is that in traditional core files only the first 4,096 bytes of the main
executable and each shared libraries’ text images are written to disk. This is done to save space, and,
considering that the text segment presumably should not change, this is usually OK. However, in forensics
analysis we must be open to the possibility of an RWX text segment that has been modified, e.g., with inline
function hooking.

8.4 Heuristics

Also notice that there is one section showing a suspicious-looking shared library that is not marked as the
type SHLIB but instead as INJECTED.

[2 6] e v i l _ l i b . s o . t e x t INJECTED 00007 fb0358c3000 00215000
2 0000000000002000 0000000000000000 A 0 0 8

“#define SHT_INJECTED 0x200000” is custom and the readelf utility has been modified on my system
to reflect this. A standard readelf will show it as <unknown>.

This section is for a shared library that was considered by ecfs to be maliciously injected into the process.
The ecfs core handler does quite a bit of heuristics work on its own, and therefore leaves very little work for
the forensic analyst. In other words, the analyst no longer needs to know jack about ELF in order to detect
complex memory infections (more on this with the PLT/GOT hook detection later!)

Note that these heuristics are enabled by passing the -h switch to /opt/bin/ecfs. Currently, there
are occasional false-positives, and for people designing their own heuristics it might be useful to turn the
ecfs-heuristics off.

8.5 Custom section headers

Moving on, there are a number of other custom sections that bring to light a lot of information about the
process.

[2 7] . p r s t a t u s PROGBITS 0000000000000000 0023 f000
2 0000000000000150 0000000000000150 0 0 4

[2 8] . f d i n f o PROGBITS 0000000000000000 0023 f150
4 0000000000000 c78 0000000000000214 0 0 4

[2 9] . s i g i n f o PROGBITS 0000000000000000 0023 fdc8
6 0000000000000080 0000000000000080 0 0 4

[3 0] . auxvec to r PROGBITS 0000000000000000 0023 f e48
8 0000000000000130 0000000000000008 0 0 8

[3 1] . exepath PROGBITS 0000000000000000 0023 f f 7 8
10 0000000000000024 0000000000000008 0 0 1

[3 2] . p e r s o n a l i t y PROGBITS 0000000000000000 0023 f f 9 c
12 0000000000000004 0000000000000004 0 0 1

[3 3] . a r g l i s t PROGBITS 0000000000000000 0023 f f a 0
14 0000000000000050 0000000000000001 0 0 1

I will not go into complete detail for all of these, but will later show you a simple parser I wrote using the
libecfs API that is designed specifically to parse ecfs-core files. You can probably guess as to what most of
these contain, as they are somewhat straightforward; i.e., .auxvector contains the process’ auxiliary vector,
and .fdinfo contains data about the file descriptors, sockets, and pipes within the process, including TCP
and UDP network information. Finally, .prstatus contains elf_prstatus and similar structs.

8.6 Symbol table resolution

One of the most powerful features of ecfs is the ability to reconstruct full symbol tables for all functions.

$ r e a d e l f −s host .10710
2

Symbol t ab l e ’ .dynsym ’ conta in s 7 e n t r i e s :

52

4 Num: Value Size Type Bind Vis Ndx Name
0 : 0000000000000000 0 NOTYPE LOCAL DEFAULT UND

6 1 : 000000300106 f2c0 0 FUNC GLOBAL DEFAULT UND fput s
2 : 0000003001021dd0 0 FUNC GLOBAL DEFAULT UND __libc_start_main

8 3 : 000000300106 edb0 0 FUNC GLOBAL DEFAULT UND f g e t s
4 : 00007 fb0358c3000 0 NOTYPE WEAK DEFAULT UND __gmon_start__

10 5 : 000000300106 f070 0 FUNC GLOBAL DEFAULT UND fopen
6 : 00000030010 c1890 0 FUNC GLOBAL DEFAULT UND s l e ep

12
Symbol t ab l e ’ .symtab ’ conta in s 5 e n t r i e s :

14 Num: Value Size Type Bind Vis Ndx Name
0 : 00000000004004b0 112 FUNC GLOBAL DEFAULT 10 sub_4004b0

16 1 : 0000000000400520 42 FUNC GLOBAL DEFAULT 10 sub_400520
2 : 000000000040060d 160 FUNC GLOBAL DEFAULT 10 sub_40060d

18 3 : 00000000004006b0 101 FUNC GLOBAL DEFAULT 10 sub_4006b0
4 : 0000000000400720 2 FUNC GLOBAL DEFAULT 10 sub_400720

Notice that the dynamic symbols (.dynsym) have values that actually reflect the location of where those
symbols should be at runtime. If you look at the .dynsym of the original executable, you would see those
values all zeroed out. With the .symtab symbol table, all of the original function locations and sizes
have been reconstructed by performing analysis of the exception handling frame descriptors found in the
PT_GNU_EH_FRAME segment of the program in memory.37

8.7 Relocation entries and PLT/GOT hooks

Another very useful feature is the fact that ecfs-core files have complete relocation entries, which show the
actual runtime relocation values—or rather what you should expect this value to be. This is extremely handy
for detecting modification of the global offset table found in .got.plt section.

1 $ r e a d e l f −r host .10710

3 Re locat ion s e c t i o n ’ .rela.dyn ’ at of f set 0x23e0 conta in s 1 e n t r i e s :
Offset In f o Type Sym. Value Sym. Name + Addend

5 000000600 f f 8 000400000006 R_X86_64_GLOB_DAT 00007 fb0358c3000 __gmon_start__ + 0

7 Re locat ion s e c t i o n ’ . r e l a .p l t ’ at of f set 0 x23f8 conta in s 6 e n t r i e s :
Offset In f o Type Sym. Value Sym. Name + Addend

9 000000601018 000100000007 R_X86_64_JUMP_SLO 000000300106 f2c0 fput s + 0
000000601020 000200000007 R_X86_64_JUMP_SLO 0000003001021dd0 __libc_start_main + 0

11 000000601028 000300000007 R_X86_64_JUMP_SLO 000000300106 edb0 f g e t s + 0
000000601030 000400000007 R_X86_64_JUMP_SLO 00007 fb0358c3000 __gmon_start__ + 0

13 000000601038 000500000007 R_X86_64_JUMP_SLO 000000300106 f070 fopen + 0
000000601040 000600000007 R_X86_64_JUMP_SLO 00000030010 c1890 s l e ep + 0

Notice that the symbol values for the .rela.plt relocation entries actually show what the GOT should
be pointing to. For instance:

000000601028 000300000007 R_X86_64_JUMP_SLO 000000300106 edb0 f g e t s + 0

This means that 0x601028 should be pointing at 0x300106edb0, unless of course it hasn’t been resolved
yet, in which case it should point to the appropriate PLT entry. In other words, if 0x601028 has a value that
is not 0x300106edb0 and is not the corresponding PLT entry, then you have discovered malicious PLT/GOT
hooks in the process. The libecfs API comes with a function that makes this heuristic extremely trivial to
perform.

37I cover this nifty technique in more detail at http://www.bitlackeys.org/#eh_frame.

53

8.8 Libecfs Parsing and Detecting DLL Injection

Still sticking with our host.10710 ecfs-core file, let us take a look at the output of readecfs, a parsing
program I wrote. It’s a very small C program; its power comes from using libecfs.

1 $. / r e ad e c f s . . / i n f e c t e d / host .10710
− read_ecfs output f o r f i l e . . / i n f e c t e d / host .10710

3 − Executable path (. exepath) : /home/ryan/ g i t / e c f s / e c f s_ t e s t s / host
− Thread count (. p r s t a t u s) : 1

5 − Thread i n f o (. p r s t a t u s)
[thread 1] pid : 10710

7
− Exited on s i g n a l (. s i g i n f o) : 11

9 − f i l e s / p ipes / so cke t s (. f d i n f o) :
[fd : 0] path : /dev/ pts /8

11 [fd : 1] path : /dev/ pts /8
[fd : 2] path : /dev/ pts /8

13 [fd : 3] path : / e tc /passwd
[fd : 4] path : /tmp/passwd_info

15 [fd : 5] path : /tmp/ e v i l_ l i b . s o

17 a s s i gn i ng
− Pr int ing shared l i b r a r y mappings :

19 ld−2 . 1 9 . s o . t e x t
ld−2 . 1 9 . s o . r e l r o

21 ld−2 . 1 9 . s o . d a t a . 0
l i b c −2 . 1 9 . s o . t e x t

23 l i b c −2 . 1 9 . s o . u nd e f
l i b c −2 . 1 9 . s o . r e l r o

25 l i b c −2 . 1 9 . s o . d a t a . 1
e v i l _ l i b . s o . t e x t // HMM INTERESTING

27
.dynsym : − 0

29 .dynsym : fput s − 300106 f2c0
.dynsym : __libc_start_main − 3001021dd0

31 .dynsym : f g e t s − 300106 edb0 // OF IMPORTANCE
.dynsym : __gmon_start__ − 7 fb0358c3000

33 .dynsym : fopen − 300106 f070
.dynsym : s l e ep − 30010 c1890

35
.symtab : sub_4004b0 − 4004b0

37 .symtab : sub_400520 − 400520
.symtab : sub_40060d − 40060d

39 .symtab : sub_4006b0 − 4006b0
.symtab : sub_400720 − 400720

41
− Pr int ing out GOT/PLT c h a r a c t e r i s t i c s (p ltgot_info_t) :

43 g o t s i t e : 601018 gotva lue : 300106 f2c0 g o t s h l i b : 300106 f2 c0 p l t v a l : 4004 c6
g o t s i t e : 601020 gotva lue : 3001021dd0 go t s h l i b : 3001021dd0 p l t v a l : 4004d6

45 g o t s i t e : 601028 gotva lue : 7 fb0358c3767 go t s h l i b : 300106 edb0 p l t v a l : 4004 e6 // WHAT IS WRONG HERE?
g o t s i t e : 601030 gotva lue : 4004 f6 g o t s h l i b : 7 fb0358c3000 p l t v a l : 4004 f6

47 g o t s i t e : 601038 gotva lue : 300106 f070 go t s h l i b : 300106 f070 p l t v a l : 400506
g o t s i t e : 601040 gotva lue : 30010 c1890 go t s h l i b : 30010 c1890 p l t v a l : 400516

49
− Pr int ing aux i l i a r y vec to r (. a u x i l l i a r y) :

51 AT_PAGESZ: 1000
AT_PHDR: 400040

53 AT_PHENT: 38
AT_PHNUM: 9

55 AT_BASE: 0
AT_FLAGS: 0

57 AT_ENTRY: 400520
AT_UID: 0

59 AT_EUID: 0
AT_GID: 0

61
− Disp lay ing ELF header :

63 e_entry : 0x400520
e_phnum : 20

65 e_shnum : 40
e_shof f : 0 x 2 3 f f f 0

67 e_phoff : 0x40
e_shstrndx : 39

69
−−− truncated r e s t o f output −−−

54

Just from this output alone, you can see so much about the program that was running, including that
at some point a file named /tmp/evil_lib.so was opened, and—as we saw from the section header output
earlier—it was also mapped into the process.

[2 6] e v i l _ l i b . s o . t e x t INJECTED 00007 fb0358c3000 00215000
2 0000000000002000 0000000000000000 A 0 0 8

Not just mapped in, but injected—as shown by the section header type SHT_INJECTED. Another red flag
can be seen by examining the line from my parser that I commented on with the note “WHAT IS WRONG
HERE?”

g o t s i t e : 601028 gotva lue : 7 fb0358c3767 go t s h l i b : 300106 edb0 p l t v a l : 4004 e6

The gotvalue is 0x7fb0358c3767, yet it should be pointing to 0x300106edb0 or 0x4004e6. Notice
anything about the address that it’s pointing to? This address 0x7fb0358c3767 is within the range of
evil_lib.so. As mentioned before it should be pointing at 0x300106edb0, which corresponds to what
exactly? Well, let’s take a look.

1 $ r e a d e l f −r host .10710 | grep 300106 edb0
000000601028 000300000007 R_X86_64_JUMP_SLO 000000300106 edb0 f g e t s + 0

So we now know that fgets() is being hijacked through a PLT/GOT hook! This type of infection has
been historically somewhat difficult to detect, so thank goodness that ECFS performed all of the hard work
for us.

To further demonstrate the power and ease-of-use that ECFS offers, let us write a very simple memory
virus/backdoor forensics scanner that can detect shared library (DLL) injection and PLT/GOT hooking.
Writing something like this without libecfs would typically take a few thousand lines of C code.

−− de t e c t_d l l_ in f e c t i on . c −−

2
#include " . . / l ibec f s .h"

4
int main (int argc , char ∗∗ argv)

6 {
ec f s_e l f_t ∗desc ;

8 ecfs_sym_t ∗dsyms , ∗ lsyms ;
char ∗progname ;

10 int i ;
char ∗ l ibname ;

12 ecfs_sym_t ∗dsyms ;
unsigned long evi l_addr ;

14
i f (argc < 2) {

16 p r i n t f ("Usage : %s <ecfs_file>\n" , argv [0]) ;
e x i t (0) ;

18 }

20 desc = load_ec f s_ f i l e (argv [1]) ;
progname = get_exe_path (desc) ;

22
f o r (i = 0 ; i < desc−>ehdr−>e_shnum; i++) {

24 i f (desc−>shdr [i] .sh_type == SHT_INJECTED) {
libname = strdup(&desc−>shs t r t ab [desc−>shdr [i] .sh_name]) ;

26 p r i n t f (" [!] Found maliciously injected shared library : %s\n" , l ibname) ;
}

28 }
pltgot_info_t ∗ p l t go t ;

30 int ret = get_pltgot_info (desc , &p l t go t) ;

55

f o r (i = 0 ; i < re t ; i++) {
32 i f (p l t go t [i] .got_entry_va != p l t go t [i] .shl_entry_va && p l t go t [i] .got_entry_va !=

p l t go t [i] .plt_entry_va)
p r i n t f (" [!] Found PLT/GOT hook , function ’name’ i s pointing at %lx instead

of %lx\n" ,
34 p l t go t [i] .got_entry_va , evi l_addr = p l t go t [i] .shl_entry_va) ;

}
36 ret = get_dynamic_symbols (desc , &dsyms) ;

f o r (i = 0 ; i < re t ; i++) {
38 i f (dsyms [i] . symval == evi l_addr) {

p r i n t f (" [!] %lx corresponds to hijacked function : %s\n" , dsyms [i] .symval , &dsyms [i] . s t r t a b [
dsyms [i] . nameo f f s e t]) ;

40 break ;
}

42 }
}

This program analyzes an ecfs-core file and detects both shared library injection and PLT/GOT hooking
used for function hijacking. Let’s now run it on our ecfs file.

1 $. / de t e c t_d l l_ in f e c t i on host .10710
[!] Found mal i cous ly i n j e c t e d shared l i b r a r y : e v i l _ l i b . s o . t e x t

3 [!] Found PLT/GOT hook , func t i on ’name’ i s po in t ing at 7 fb0358c3767 in s t ead o f 300106 edb0
[!] 300106 edb0 corresponds to h i j acked func t i on : f g e t s

With just simple forty lines of C code, we have an advanced detection tool capable of detecting an
advanced memory infection technique, commonly used by attackers to backdoor a system with a rootkit or
virus.

8.9 In Closing

If you liked this paper and are interested in using or contributing to ECFS, feel free to contact me. It will
be made available to the public in the near future.38

Shouts to Orangetoaster, Baron, Mothra, Dk, Sirus, and Per for ideas, support and feedback regarding
this project.

38http://github.com/elfmaster/ecfs

56

57

9 Bambaata speaks from the past.

by Count Bambaata, Senior NASCAR Correspondent

“Myths and legends die hard in America. We love them for the extra dimension they provide, the illusion of
near–infinite possibility to erase the narrow confines of most men’s reality. Weird heroes and mould–breaking
champions exist as living proof to those who need it that the tyranny of ’the rat race’ is not yet final.”

Gonzo Papers, Vol. 1: The Great Shark Hunt: Strange Tales from a Strange Time, Hunter S. Thompson,
1979.

It’s been an interesting ride for someone who has
witnessed nearly all of the perspectives and colliding
philosophies of the computer security practice. Hav-
ing met professionals and enthusiasts of other fields
of knowledge built upon the foundations of scientific
work, I could say few other industries are as swarmed
with swine and snake oil salesmen as computer secu-
rity. I guess the medium lends itself to such delusions
of self–worth and importance. Behind a screen, where
you can’t see the white of the eyes of the people you
interact with, anything is possible.

It doesn’t help it that, deprived of other values as
important as human contact, true friendship and un-
interested genuine camaraderie, fame and financial
success dictate the worth of the individual. Far from
being the essence of the so–called American dream,
where the individual succeeds thanks to persistence
and true innovation, in computer security, and more
specifically, in the area of security I will be address-
ing in this letter, success comes from becoming a vir-
tual merchant of vacuum and nothingness, charging
a commission for doing absolutely nothing, bringing
absolutely no innovation, unfortunately at tax pay-
ers expense, as we will see later. An economy built
upon the mistakes of others, staying afloat only so as
long as such mistakes are never addressed and true
solutions remain undeveloped and underutilized.

Going back to the early 2000s, there were two ma-
jor perspectives on publication and distribution of
security vulnerabilities. On one side, those against
it (not for economical reasons but a philosophy tak-
ing from the times when “hacking” actually meant to
hack, not for publicity or profit, but curiosity and
technical prowess). These “black hats” perhaps rep-
resented the last remnants of a waning trend of de-
testing the widely extended practice of capitalizing
security vulnerabilities in a perpetual state of fear
and confusion taking advantage of the (then mostly)
ignorant user base of networked computers. Oppos-
ing them, a large mob in the industry proclaimed
the benefits and legitimacy of “full” and “responsible”

disclosure. These individuals claimed the right moral
choice was to make information about exploitation
of vulnerabilities (and the flaws themselves) publicly
available.

They were eager to call out “black hats” with dis-
dain, as dangerous amoral people whose intentions
ranged from everything between stealing banking cre-
dentials, spreading viruses or, well, fucking children
if they ran out of expletives and serious sounding ac-
cusations for the press. No accusation was too far-
fetched. Underneath, an entire network of consulting
firms thrived on the culture of fear carefully built with
hype. Techniques and vulnerabilities known to the
anti–disclosure community for years surfaced, leading
to events such as the swift sweep of format string vul-
nerabilities that led to a bug class nearly phasing out
of existence within less than two years. Back then,
some of the members of the industry were able to
market IDS products to customers keeping a straight
face. And the swine only got better at that game.

As much as groups such as Anonymous and others
have prostituted whatever was left of that original
“antisecurity” community and its philosophy, whose
purpose had nothing to do with achieving fame out
of proclaiming themselves as some sort of armchair
bourgeoisie revolutionaries, today the landscape is, if
you pardon the expression, hilarious. Fast forward
to a post–9/11 America, with the equities problem
(COMSEC versus SIGINT) leaning to the side of
SIGINT. The consulting houses from the old days and
a swarm of new small shops appeared in the radar to
supply a niche necessity created as an attempt to ad-
dress the systematic compromise and ravaging of de-
fense industry corporations and federal government
networks.

Welcome to the vulnerability market. Flock after
flock of vultures fly in circles in a market where obscu-
rity, secrecy and true loyalty are no longer desirable
traits, but handicaps. If you are discreet, and remain
silent and isolated from the other “players”, the buy-
ers will play you out. In a strange mix of publicity

58

hogs and uncleared greed–crazed freaks, middlemen
thrive as the intelligence community desperately tries
to address the fact that we are lagging a decade be-
hind the people ravaging our systems, gooks and oth-
erwise. Middlemen provide a much needed layer of
separation, while hundreds of thousands of dollars,
amounting up to millions, are spent without congres-
sional supervision. Anything goes with the market.
Individuals who would never be accepted to partici-
pate in any kind of national security–impacting ac-
tivities live lavish lifestyles, dope addled and con-
fident that their business goes undisturbed. Quite
simply, these opportunist swindlers are hustling the
buck while the status quo remains unaffected. Just
to name one example, Cisco has had its intellectual
property stolen several times. Of those compromises,
none involving “black hats” resulted in its technology
magically appearing at Huawei headquarters. Picture
a pubescent 25 year old Chinese virgin incessantly
removing “PROPRIETARY” copyright banners from
Cisco IOS source, as he laughs hysterically slurping
up noodles from a Ramen shake n’ bake cup. The
tale of Abdul Qadeer Khan, or a certain Crown Cor-
poration, are lullabies compared to the untold stories
that, quite probably, some day will be declassified
for our grandsons to read, provided that full–blown
Idiocracy hasn’t ensued, and (excuse the language),
nobody gives a flying fuck anymore.

Let’s gaze back at the past, something is wrong here.
Where did the responsible disclosure geeks go? It was
a majestic party. Everyone was having a ball. Sud-
denly, everyone left and nobody bothered to clean the
mess. Perhaps they found a new spiritual path, re-
tiring to a tranquil life enjoying the fruits of the late
1990s and early to mid 2000s, carefree and happy to
leave the snake oil salesman life behind. Did they take
vows of poverty, donated all they had to the Salva-
tion Army, or the Dalai Lama, and left for Bhutan?
Not quite. Please, let me, your humble host, guide
you to Crook Planet. It’s a strange place. I used
to like it in here. Where I come from, they say when
you earn someone’s trust and friendship, it’s a lifelong
deal. You break it, and you wish you had never been
friends with the poor bastard. In a way, it is bet-
ter to be wronged by someone you don’t know than
being played by someone you considered “a friend.”
The word has reasonably dropped value these days.
It’s short of meaning “someone I hang out with, can
get reasonably drunk with, but that’s about it.” A
long time ago, a friend and mentor told me a real
friend is the calm guy bothering himself to go visit

you in jail. Everyone else bails out. But that fellow
goes there. Like a grandmother, without the weeping.
You shake hands. Share a few old stories. Implicitly,
you know he’s your only chance. But we’re drifting
slightly from our route. Crook Planet, it was. Yes.

If you were wondering where all those ethical evan-
gelists of the responsible disclosure creed went, well,
wonder no more. They’ve gone silent, because that’s
where the dough is at. Keeping silent. Not among
them, despite the NDAs in place, because they know
that remaining silent, makes them vulnerable when
facing buyers. There is irony about the turns of his-
tory. Here we are, trading mechanisms and tools
to subvert technology, when years ago we considered
their publication perfectly valid. And there is a need
for offensive capabilities. Are American corporations
and its federal government under attack? Yes, they
are. Does the market, as it is lined out right now,
help the tradecraft and improve the status quo? No,
it doesn’t. But millions are plunging into the pockets
of people whose interest, was, is and will always be
that we, including the government, remain insecure.
People have developed defensive technology that can
render certain paths of abuse completely unreliable.
The reaction of the greed–crazed freaks in the mar-
ket, which I and others in similar positions have on
record, ranged from negative to cocky (“It will drive
up the prices, good for us”). Well, you greedy swine,
this was never about the money. At least, it wasn’t
for me. The kind of offensive capabilities I and my
company developed could have netted us immense
return on investment if used illegally. And so would
yours.

The crude truth is that, by current market prices,
they don’t even come close to the risk–reward equa-
tion our adversaries have. Whether it is sixty thou-
sand or a quarter million for an exploit yielding high
privilege access to a modern operating system, the
price is still dramatically ridiculous if compared to
the value of the intelligence and trade secrets that
can be stolen from domestic corporations and the
government itself. The market fails to address any
of the problems we face today, while it creates a very
real threat. Are we protecting ourselves against the
exploits being traded among different agencies and
defense contractors? Not a chance. We could see
offensive security as the realm of smart men, whose
greed exceeded their talents, and made them shit in
their own nests. Those teenagers who were shrugged
off by the industry in the early 2000s (despite the
fact that they managed to publish personal informa-

59

tion of industry professionals and routinely compro-
mised their systems, assumed to be, at the very least,
slightly more secure than those of the laymen) com-
promised Fortune 50 corporations and obtained trade
secrets ranging from proprietary operating system
source code to design documents. For free, at zero
cost. The first hackers unlocking the Apple iPhone
had proprietary schematics of Samsung devices. To-
day, you can acquire the schematics of any phone in
the markets of Shenzhen, China. The most public
cases of “whistle blowers” have been individuals with
top level clearances. As wave after wave of swine beat
on their chests and chant patriotic lures, they salivate
for a piece of the defense budget, hoping policy never
changes. The problem, clearly, isn’t the need for of-
fensive capabilities. They are necessary. The Cold
War never quite went cold. What we don’t need,
though, is swine playing the prom queens for us. Be-
cause it is only a matter of time until this entire clus-
terfuck of a party backfires on us, and it’s going to be
an interesting crash landing when they start dodging
the liabilities. These people do not care about the
status quo. They are milking the cow, for as long as
it lasts, just like it happened when disclosing infor-
mation had any sizable “return on investment.” Once
the hush money goes away, they might as well go back
to the old tale of responsible disclosure. Crook Planet
is also Turncoat Planet.

Everyone is willing to remain silent, for a fee. De-
veloping security mitigations to protect both the de-
fense industry and the layman is frowned upon. Talk-
ing about the market is frowned upon. Disclosing
that former “ethical security researchers” are in it and
silent for the big bucks is frowned upon. Acknowl-
edging that the adversary is ahead of us because we
are greedy swine hustling for tax payers’ money is
frowned upon. It’s all bad for “business.” This hyped
up “cyber war” of sorts, unless we do something about
it, and do it now, is going to be about as successful as
the “War on Drugs” and the “War on Terror.” Billions
going into the deep pockets of people whose creed is
green, and made out of dollar bills, but are too dumb
to figure out, that in the scheme of things, they are
their (and our) own worst enemies.

So much for sworn commitment to defend the Con-
stitution and laws of the United States against all
enemies, foreign and. . . Domestic? For a fee. Thank-

fully, the federal government and its institutions
aren’t exclusively packed with swine and salesmen.
There are, too, good people, no different than you
or me, whose goal is to help their fellow men. Bau-
drillard called America “the last primitive society on
Earth.” A society capable of swift change, of both
great and depraved actions. Like good ole’ Hunter
said, “In a nation run by swine, all pigs are upward–
mobile and the rest of us are fucked until we can put
our acts together: Not necessarily to Win, but mainly
to keep from Losing Completely.” We better get this
act together, soon.

I have managed to arrive at this point still remain-
ing a gentleman. No names were called out. But if
something happened, if I had the wrong hunch, pro-
fessionally or personally, if I was disturbed in any way,
or those whom are dear to me, let it be clear enough,
that I’m not driven by wealth nor power, and even
though I’ve never supported organizations like Wik-
iLeaks, 39 I’m this fucking close to picking up a phone
and start slipping letters into mail boxes.

All these years, when companies such as Microsoft
created databases filled with files on the scene (thanks
to their “Outreach” program, a theme park version of
a COINTELPRO), and contractors and firms did the
same, my own files grew in size, not with gossip, but
a very different kind of dirt. “To live outside the law
you must be honest,” as the Dylan song goes.

The question is: are we feeling lucky? Well. . . Are
we?

Sincerely yours,

Count Bambaata, Head of the
Department of Swine Slaughtering and
Angry Letters Filled With Expletives

39With their eerie fixation on demonizing America, as much as we owe domestic swine for letting them have any dirt in first
place, let’s not confuse things here and dodge the blame.

60

10 Public Service Announcement

We dedicate this page to public service, offering a handy cheat sheet for all the would–be regulators of 0–day
sales and cyberbullets, so that they don’t keep embarrassing themselves in public by misusing the words of
our profession. If you know such an aspiring regulator, please feel free to cut this page out on the dotted
line and mail it to them!

Zero–day Cyberbullet Regulation

Cheat Sheet & Fashion Advice

If Cyber is your style, Zero–day Regulation is “in” this legislative season. An-

noyingly, cyberbullet merchants–of–death use too much technical jargon to

hawk their deadly Turing–complete wares, and it’s all too easy to mix them

all up. Now that would be embarrassing, wouldn’t it?

But despair not! With this handy cheat sheet you will soon be legislating

cyberbullet export restrictions on evil cyberhackers like a cyberpro!

And remember: whatever your proposal, neither IMSI Catchers nor Rogue

Wi–Fi Access Points are “exploits.” Exploits are what you used to jailbreak

your iPhone to load the apps that you want but Apple doesn’t; never confuse

the two!

61

11 Cyber Criminal’s Song

Arranged for an Anonymized Voice and the HN chorus
by Ben Nagy

(with abject apologies to G&S)

I am the very model of modern Cybercriminal
I’ve knowledge hypothetical that’s technical and chemical
And conduct most becoming, both grammatical and ethical!

I build my site with PHP so coders are replaceable
I keep it all behind, like, seven proxies and a firewall
And Tor is such secure so wow - my webs are much unbreakable!
I’m careful with my secret life, I haven’t told a single soul
(Except three guys on Xbox Live and Chad whose .torrc I stole)

[CHORUS]
SERIOUSLY, THANKS CHAD, THAT CONFIG IS TOTALLY SWEEET

My cash is stored in bitcoin, the transactions are untraceable
I read on Hacker News that the cryptography’s exceptional
And so, on matters technical, theoretical, and chemical
I am the very model of modern Cybercriminal!

I’m totes well versed in Haskell and I love the lambda calculus
I know Actionscript and Coffeescript and XML and CSS
And OCaml and Rust and D and Clojure plus some Common LISP
My daring Cyberlife is like The Matrix with a modern twist!
(But to stay close the metal I prefer to roll with node.js)

[CHORUS]
TO STAY CLOSE TO THE METAL WE PREFER TO ROLL ON NODE JSSSSSS

For matters pharmaceutical I’m well researched on Erowid
From Aderall to Zolpidem and Dexedrine to Dicodid
From re-uptake inhibitors to analgesic opioids
I know the pharmacology of all the drugs the world enjoys
Good Sir, in fields theoretical, chemical, and technical
I am the very model of modern Cybercriminal!

I downloaded all five seasons of The Wire from The Pirate Bay
And studied all their OPSEC and legalities of what to say
If interviewed by cops and, well, I must admit it’s child’s play
How do these people make mistakes? Such staggering näıveté!

[CHORUS]
WE’D NEVER MAKE SUCH NOOB MISTAKES WE LAUGH AT YOUR NAÏVETÉ

62

My records are impeccable, I keep them all in triplicate
I know what day I paid for my new Tesla or my contract hits
I run GNUCash on Linux my finances are so intricate
And all backed up to Google Docs which makes me a Cloud Syndicate.

[CHORUS]
WE’RE REALLY VERY SORRY BUT WELL ACTUALLY IT’S GNU/LINUX

Then, I can quote Sun Tzu or Nietzsche highlights from the Internet
My strategies are therefore quite profound much like my intellect
Yes, for all things theoretical, technical and chemical
I am the very model of a modern Cybercriminal!

In fact, when I know what is meant by “cover” and “concealment”
When I can keep my Facebook, Yelp and Tinder in a compartment
Or when I know the difference ’tween a public and a private key
Stop logging in to check my recent sales from the library
When I can keep my mouth shut in a bar just momentarily
In short, when I have frankly any skills that go beyond my screen
You’ll say no better Cybercriminal the world has ever seen!

Though criminally weak, you’ll find I’m plucky and adventury
And though my reading starts at the beginning of the century
On matters theoretical, technical and chemical
I am totally the model of a modern Cybercriminal!

[CHORUS]
THE VERY VERY MODEL OF THE MODERN CYBER CRIMINAL!

63

12 Fast Cash for Bugs!

by Pastor Manul Laphroaig, Proselytizer of Weird Machines

Howdy, neighbor! Is that a fresh new PoC you are hugging so close? Don’t stifle it, neighbor, it’s time
for it to see the world, and what better place to do it than from the pages of the famed International Journal
of PoC or GTFO? It will be in a merry company of other PoCs big and small, bit–level and byte–level, raw
binary or otherwise, C, Python, Assembly, hexdump or any other language. But wait, there’s more—our
editors will groom it for you, and dress it in the best Sunday clothes of proper church English. And when it
looks proudly back at you from these pages, in the company of its new friends, won’t that make you proud?
So set that little PoC free, neighbor, and let it come to me, pastor@phrack org!

– — — – — — — — – — – — — — – — – — — – — – – — – — — —
Do this: write an email telling our editors how to do reproduce *ONE* clever, technical trick from your

research. If you are uncertain of your English, we’ll happily translate from French, Russian, or German. If
you don’t speak those languages, we’ll dig up a translator.

Like an email, keep it short. Like an email, you should assume that we already know more than a bit
about hacking, and that we’ll be insulted or—WORSE!—that we’ll be bored if you include a long tutorial
where a quick reminder would do.

Don’t try to make it thorough or broad. Don’t use Powerpoint bullet–points or OpenOffice Unicode;
we’ll typeset it for you.

Do pick one quick, clever low–level trick and explain it in a few pages. Teach me how to make music
that also parses as PSK31, RTTY, or WeFax. Show me how to reverse engineer SoftStrip barcodes. Don’t
tell me that it’s possible; rather, teach me how to do it myself with the absolute minimum of formality and
bullshit.

Like an email, we expect informal (or faux–biblical) language and hand–sketched diagrams. Write it in a
single sitting, and leave any editing for your poor preacherman to do over a bottle of fine scotch. Send this
to pastor@phrack org and hope that the neighborly Phrack folks—praise be to them!—aren’t man–in–the–
middling our submission process.

64

