
International Journal of PoC ‖ GTFO

Issue 0x00, a CFP with PoC

An epistle from the desk of Rt. Revd. Pastor Manul Laphroaig

pastor@phrack.org

August 5, 2013

Legal Note: Permission to use all or part of this work for personal, classroom, or whatever other use is NOT

granted unless you make a copy and pass it to a neighbor without fee, excepting libations offered by the aforementioned

neighbor in order to facilitate neighborly hacking, and that said copy bears this notice and the full citation on the first

page. Because if burning a book is a sin—which it surely is!—then copying of a book is your sacred duty. For uses in

outer space where a neighbor to share with cannot be readily found, seek blessing from the Pastor and kindly provide

your orbital ephemerides and radio band so that updates could be beamed to you via the Southern Appalachian

Space Agency (SASA).

1 Call to Worship

Neighbors, please join me in reading this first issue of the International Journal of Proof of Concept or Get
the Fuck Out, a friendly little journal for ladies and gentlemen of distinguished ability and taste in the field
of computer security and the architecture of weird machines.

In Section 2, Travis Goodspeed will show you how to build your own antiforensics hard disk out of an
iPod by simple patching of the open source Rockbox firmware. The result is a USB disk, which still plays
music, but which will also self destruct if forensically imaged.

In Section 3, Julian Bangert and Sergey Bratus provide some nifty tricks for abusing the differences in
ELF dialect between exec() and ld.so. As an example, they produce a file that is both a library and an
executable, to the great confusion of reverse engineers and their totally legitimate IDA Pro licenses.

Section 4 is a sermon on the subjects of Bitcoin, Phrack, and the den on iniquity known as the RSA
Conference, inviting all of you to kill some trees in order to save some source. It brings the joyful news that
we should all shut the fuck up about hat colors and get back to hacking!

Delivering even more nifty ELF research, Bx presents in Section 5 a trick for returning from the ELF
loader into a libc function by abuse of the IFUNC symbol. There’s a catch, though, which is that on amd64
her routine seems to pass a very restricted set of arguments. The first parameter must be zero, the second
must be the address of the function being called, and the third argument must be the address of the symbol
being dereferenced. Readers who can extend this into an arbitrary return to libc are urged to do it and share
the trick with others!

Remembering good times, Section 6 by FX tells us of an adventure with Barnaby Jack, one which features
a golden vending machine and some healthy advice to get the fuck out of Abu Dhabi.

Finally, in Section 7, we pass the collection plate and beg that you contribute some PoC of your own.
Articles should be short and sweet, written such that a clever reader will be inspired to build something
nifty.

1

2 iPod Antiforensics

by Travis Goodspeed

In my lecture introducing Active Disk Antiforensics at 29C3, I presented tricks for emulating a disk with
self defense features using the Facedancer board. This brief article will show you how to build your own
antiforensics disk out of an iPod by patching the Rockbox framework.

To quickly summarize that lecture: (1) USB Mass Storage is just a wrapper for SCSI. We can implement
these protocols and make our own disks. (2) A legitimate host will follow the filesystem and partition data
structure, while a malicious host—that is to say, a forensics investigator’s workstation—will read the disk
image from beginning to end. There are other ways to distinguish hosts, but this one is the easiest and has
fewest false positives. (3) By overwriting its contents as it is being imaged, a disk can destroy whatever
evidence or information the forensics investigator wishes to obtain.

There are, of course, exceptions to the above rules. Some high-end imaging software will image a disk
backward from the last sector toward the first. A law-enforcement forensics lab will never mount a volume
before imaging it, but an amateur or a lab less concerned with a clean prosecution might just copy the
protected files out of the volume.

Finally, there is the risk that an antiforensics disk might be identified as such by a forensics investigator.
The disk’s security relies upon the forensics technician triggering the erasure, and it won’t be sufficient if the
technician knows to work around the defenses. For example, he could revert to the recovery ROM or read
the disk directly.

2.1 Patching Rockbox

Rockbox exposes its hard disk to the host through USB Mass Storage, where handler functions implement
each of the different SCSI commands needed for that protocol. To add antiforensics, it is necessary only to
hook two of those functions: READ(10) and WRITE(10).

In firmware/usbstack/usb storage.c of the Rockbox source code, blocks are read in two places. The
first of these is in handle scsi(), near the SCSI READ 10 case. At the end of this case, you should see a call
to send and read next(), which is the second function that must be patched.

In both of these, it is necessary to add code to both (1) observe incoming requests for illegal traffic and
(2) overwrite sectors as they are requested after the disk has detected tampering. Because of code duplication,
you will find that some data leaks out through send and read next() if you only patch handle scsi(). (If these
function names mean nothing to you, then you do not have the Rockbox code open, and you won’t get much
out of this article, now will you? Open the damn code!)

On an iPod, there will never be any legitimate reads over USB to the firmware partition. For our PoC,
let’s trigger self-destruction when that region is read. As this is just a PoC, this patch will provide nonsense
replies to reads instead of destroying the data. Also, the hardcoded values might be specific to the 2048-byte
sector devices, such as the more recent iPod Video hardware.

The following code should be placed in the SCSI READ 10 case of handle scsi(). tamperdetected

is a static bool that ought to be declared earlier in usb storage.c. The same code should go into the
send and read next() function.

//These sectors are for 2048-byte sectors.

//Multiply by 4 for devices with 512-byte sectors.

if(cur_cmd.sector>=10000 && cur_cmd.sector<48000)

tamperdetected=true;

//This is the legitimate read.

cur_cmd.last_result = storage_read_sectors(

IF_MD2(cur_cmd.lun,) cur_cmd.sector,

MIN(READ_BUFFER_SIZE/SECTOR_SIZE, cur_cmd.count),

2

cur_cmd.data[cur_cmd.data_select]

);

//Here, we wipe the buffer to demo antiforensics.

if(tamperdetected){

for(i=0;i<READ_BUFFER_SIZE;i++)

cur_cmd.data[cur_cmd.data_select][i]=0xFF;

//Clobber the buffer for testing.

strcpy(cur_cmd.data[cur_cmd.data_select],

"Never gonna let you down.");

//Comment the following to make a harmless demo.

//This writes the buffer back to the disk,

//eliminating any of the old contents.

if(cur_cmd.sector>=48195)

storage_write_sectors(

IF_MD2(cur_cmd.lun,)

cur_cmd.sector,

MIN(WRITE_BUFFER_SIZE/SECTOR_SIZE, cur_cmd.count),

cur_cmd.data[cur_cmd.data_select]);

}

2.2 Shut up and play the single!

Neighbors who are too damned lazy to read this article and implement their own patches can grab my
Rockbox patches from https://github.com/travisgoodspeed/.

2.3 Bypassing Antiforensics

This sort of an antiforensics disk can be most easily bypassed by placing the iPod into Disk Mode, which
can be done by a series of key presses. For example, the iPod Video is placed into Disk Mode by holding the
Select and Menu buttons to reboot, then holding Select and Play/Pause to enter Disk Mode. Be sure that
the device is at least partially charged, or it will continue to reboot. Another, surer method, is to remove
the disk from the iPod and read it manually.

Further, this PoC does not erase evidence of its own existence. A full and proper implementation ought
to replace the firmware partition at the beginning of the disk with a clean Rockbox build of the same revision
and also expand later partitions to fill the disk.

2.4 Neighborly Greetings

Kind thanks are due to The Grugq and Int80 for their work on traditional antiforensics of filesystems and
file formats. Thanks are also due to Scott Moulton for discretely correcting a few of my false assumptions
about real-world forensics.

Thanks are also due to my coauthors on an as-yet-unpublished paper which predates all of my active
antiforensics work but is being held up by the usual academic nonsense.

3

3 ELFs are dorky, Elves are cool

by Sergey Bratus and Julian Bangert

ELF ABI is beautiful. It’s one format to rule all the tools: when a compiler writes a love letter to the
linker about its precious objects, it uses ELF; when the RTLD performs runtime relocation surgery, it goes
by ELF; when the kernel writes an epitaph for an uppity process, it uses ELF. Think of a possible world
where binutils would use their own separate formats, all alike, leaving you to navigate the maze; or think of
how ugly a binary format that’s all things to all tools could turn out to be (∗cough∗ ASN.1, X.509 ∗cough∗),
and how hard it’d be to support, say, ASLR on top of it. Yet ELF is beautiful.

Verily, when two parsers see two different structures in the same bunch of bytes, trouble ensues. A
difference in parsing of X.509 certificates nearly broke the internets’ SSL trust model1. The latest Android
“Master Key” bugs that compromised APK signature verification are due to different interpretation of archive
metadata by Java and C++ parsers/unzippers2 – yet another security model-breaking parser differential.
Similar issues with parsing other common formats and protocols may yet destroy remaining trust in the open
Internet – but see http://langsec.org/ for how we could start about fixing them.

ELF is beautiful, but with great beauty there comes great responsibility – for its parsers.3 So do all the
different binutils components as well as the Linux kernel see the same contents in an ELF file? This PoC
shows that’s not the case.

There are two major parsers that handle ELF data. One of them is in the Linux kernel’s implementation
of execve(2) that creates a new process virtual address space from an ELF file. The other – since the majority
of executables are dynamically linked – is the RTLD (ld.so(8), which on your system may be called something
like /lib64/ld-linux-x86-64.so.24, which loads and links your shared libraries – into the same address space.

It would seem that the kernel’s and the RTLD’s views of this address space must be the same, that is,
their respective parsers should agree on just what spans of bytes are loaded at which addresses. As luck and
Linux would have it, they do not.

The RTLD is essentially a complex name service for the process namespace that needs a whole lot of
configuration in the ELF file, as complex a tree of C structs as any. By contrast, the kernel side just looks
for a flat table of offsets and lengths of the file’s byte segments to load into non-overlapping address ranges.
RTLD’s configuration is held by the .dynamic section, which serves as a directory of all the relevant symbol
tables, their related string tables, relocation entries for the symbols, and so on.5 The kernel merely looks
past the ELF header for the flat table of loadable segments and proceeds to load these into memory.

As a result of this double vision, the kernel’s view and the RTLD’s view of what belongs in the process
address space can be made starkly different. A libpoc.so would look like a perfectly sane library to RTLD,
calling an innocent “Hello world” function from an innocent libgood.so library. However, when run as an
executable it would expose a different .dynamic table, link in a different library libevil.so, and call a very
different function (in our PoC, dropping shell). It should be noted that ld.so is also an executable and can be
used to launch actual executables lacking executable permissions, a known trick from the Unix antiquity;6

however, its construction is different.
The core of this PoC, makepoc.c that crafts the dual-use ELF binary, is a rather nasty C program. It is,

in fact, a “backport-to-C” of our Ruby ELF manipulation tool Mithril7, inspired by ERESI8, but intended
for liberally rewriting binaries rather than for ERESI’s subtle surgery on the live process space.

1See “PKI Layer Cake” http://ioactive.com/pdfs/PKILayerCake.pdf by Dan Kaminsky, Len Sassaman, and Meredith L.
Patterson

2See, e.g., http://www.saurik.com/id/18 and http://www.saurik.com/id/17.
3Cf. “The Format and the Parser”, a little-known variant of the “The Beauty and the Beast”. They resolved their parser

differentials and lived vulnlessly ever after.
4Just objcopy -O binary -j .interp /bin/ls /dev/stdout, wasn’t that easy? :)
5To achieve RTLD enlightenment, meditate on the grugq’s http://grugq.github.io/docs/subversiveld.pdf and mayhem’s

http://s.eresi-project.org/inc/articles/elf-rtld.txt, for surely these are the incarnations of the ABI Buddhas of our
age, and none has described the runtime dynamic linking internals better since.

6/lib/ld-linux.so <wouldbe-execfile>
7https://github.com/jbangert/mithril
8http://www.eresi-project.org/

4

/∗ −−−−−−−−−−−−−−−−−−−− makepoc . c −−−−−−−−−−−−−−−−−−−−−−−∗/
/∗

I met a p ro f e s s o r o f arcane degree
Who sa id : Two vas t and handwri t ten par se r s
Live in the w i l d . Near them , in the dark
Hal f sunk , a s h a t t e r i n g e x p l o i t l i e s , whose frown ,
And wr ink l ed l i p , and sneer o f co l d command ,
Te l l t h a t i t s s c u l p t o r w e l l t hose papers read
Which ye t surv i ve , stamped on the s e l i f e l e s s th ings ,
The hand t ha t mocked them and the s tuden t t ha t f ed :
And on the termina l t h e s e words appear :
”My name i s Turing , wrecker o f p roo f s :
Parse t h i s unambigously , ye machine , and de spa i r !”
Nothing b e s i d e s i s p o s s i b l e . Round the decay
Of t ha t c o l o s s a l wreck , bound l e s s and bare
The lone and l e v e l roo t s h e l l s f o r k away .

−− In sp i r ed by Edward Sh e l l e y
∗/
#include < e l f . h>
#include <s t d i o . h>
#include <s t d l i b . h>
#include <s t r i n g . h>
#include <a s s e r t . h>
#define PAGESIZE 4096
s i z e t f i l e s z ;
char f i l e [3∗PAGESIZE] ; //This i s the enormous b u f f e r ho l d ing the ELF f i l e .

// For ne ighbours running t h i s on an E l e c t r on i ca BK,
// the s i z e might have to be reduced .

Elf64 Phdr ∗ f ind dynamic (El f64 Phdr ∗phdr) ; u i n t 64 t f i nd dyn s t r (El f64 Phdr ∗phdr) ;
/∗ New memory l ayou t

Memory mapped to F i l e O f f s e t s
0k ++++| | | ELF Header | −−−|

+ | F i r s t | ∗∗∗∗∗ | (o r i g . code) | | | LD. so/ ke rne l boundary assumes
+ | Page | | (r e a l . dynamic) | <−|−+ the o f f s e t t h a t a p p l i e s on d i s k

4k + +======+ +================+ | | works a l s o in memory ; however ,
+ | | | | i f phdrs are in a d i f f e r e n t
++> | Second | ∗ | k e rne l phd r |<−−|−− segment , t h i s won ’ t ho ld .

| Page | ∗ | |
| | ∗ | |
+======+ ∗ +================+

∗ | l d s o phd r s |−−−|
| f a ke . dynamic | <−|
| w/ new dyns t r |
==================

Somewhere f a r below , t h e r e i s the . data segment (which we ignore)
∗/
int e l f mag i c (){

Elf64 Ehdr ∗ ehdr = f i l e ;
El f64 Phdr ∗ o r i g phdr s = f i l e + ehdr−>e pho f f ;
El f64 Phdr ∗ f i r s t l o a d ,∗ phdr ;
int i =0;

5

//For the sake o f b r e v i t y , we assume a l o t about the l a you t o f the program :
a s s e r t (f i l e s z >PAGESIZE) ; // F i r s t 4K has the mapped par t s o f program
a s s e r t (f i l e s z <2∗PAGESIZE) ; //2nd 4K ho ld s the program headers f o r the k e rne l

//3rd 4k ho l d s the program headers f o r l d . so +
// the new dynamic s e c t i on and i s mapped j u s t above the program
for (f i r s t l o a d = or i g phdr s ; f i r s t l o a d −>p type !=PT LOAD; f i r s t l o a d ++);
a s s e r t (0 == f i r s t l o a d −>p o f f s e t) ;
a s s e r t (PAGESIZE > f i r s t l o a d −>p memsz) ; //2nd page o f memory w i l l ho ld 2nd segment
u in t 64 t base addr = (f i r s t l o a d −>p vaddr & ˜0 x f f f u l) ;

//PHDRS as read by the k e rne l ’ s execve () or d lopen () , but NOT seen by l d . so
Elf64 Phdr ∗ ke rne l phdr s = f i l e + f i l e s z ;
memcpy(kerne l phdrs , o r i g phdrs , ehdr−>e phnum ∗ s izeof (El f64 Phdr)) ; // copy PHDRs
ehdr−>e pho f f = (char ∗) ke rne l phdr s − f i l e ; //Point ELF header to new PHDRs
ehdr−>e phnum++;

//Add a new segment (PT LOAD) , see above diagram
Elf64 Phdr ∗new load = kerne l phdr s + ehdr−>e phnum − 1 ;
new load−>p type = PT LOAD;
new load−>p vaddr = base addr + PAGESIZE;
new load−>p paddr = new load−>p vaddr ;
new load−>p o f f s e t = 2∗PAGESIZE;
new load−>p f i l e s z = PAGESIZE;
new load−>p memsz = new load−>p f i l e s z ;
new load−>p f l a g s = PF R | PFW;

// Di sab l e l a r g e pages or l d . so complains when l oad ing as a . so
for (i =0; i<ehdr−>e phnum ; i++){

i f (ke rne l phdr s [i] . p type == PT LOAD)
ke rne l phdr s [i] . p a l i g n = PAGESIZE;

}

//Setup the PHDR t a b l e to be seen by l d . so , not k e rne l ’ s execve ()
Elf64 Phdr ∗ l d so phdr s = f i l e + ehdr−>e pho f f
− PAGESIZE // F i r s t 4K of program address space i s mapped in o ld segment
+ 2∗PAGESIZE; // O f f s e t o f new segment

memcpy(ldso phdrs , ke rne l phdrs , ehdr−>e phnum ∗ s izeof (El f64 Phdr)) ;
// l d . so 2.17 determines load b i a s (ASLR) o f main b inary by l oo k i n g at PT PHDR
for (phdr=ldso phdr s ; phdr−>p type != PT PHDR; phdr++);
phdr−>p paddr = base addr + ehdr−>e pho f f ; // l d . so e xpec t s PHDRS at t h i s vaddr
//This i sn ’ t used to f i nd the PHDR tab l e , but by l d . so to compute ASLR s l i d e
// (main map−>l a d d r) as (a c t ua l PHDR address)−(PHDR address in PHDR t a b l e)
phdr−>p vaddr = phdr−>p paddr ;

//Make a new . dynamic t a b l e a t the end o f the second segment ,
// to load l i b e v i l i n s t ead o f l i b g o od
unsigned dynsz = f ind dynamic (o r i g phdr s)−>p memsz ;
Elf64 Dyn ∗ old dyn = f i l e + f ind dynamic (o r i g phdr s)−>p o f f s e t ;
Elf64 Dyn ∗ ldso dyn = (char ∗) l d so phdr s + ehdr−>e phnum ∗ s izeof (El f64 Phdr) ;
memcpy(ldso dyn , old dyn , dynsz) ;
//Modify address o f dynamic t a b l e in l d s o phd r s (which i s on ly used in exec ())
f ind dynamic (ld so phdr s)−>p vaddr = base addr + (char∗) ldso dyn −

6

f i l e − PAGESIZE;

//We need a new dyns t r entry . Luck i l y l d . so doesn ’ t do range checks on s t r t a b
// o f f s e t s , so we j u s t s t i c k i t a t the end o f the f i l e
char ∗ l d s o n e ed ed s t r = (char ∗) ldso dyn +

ehdr−>e phnum ∗ s izeof (El f64 Phdr) + dynsz ;
s t r cpy (l d s o ne eded s t r , ” l i b e v i l . so ”) ;
a s s e r t (ldso dyn−>d tag == DTNEEDED) ; // r ep l a c e 1 s t dynamic entry , DT NEEDED
ldso dyn−>d un . d ptr = base addr + ld s o n e ed ed s t r − f i l e −

PAGESIZE − f i nd dyn s t r (o r i g phdr s) ;
}
void r e a d f i l e (){

FILE ∗ f= fopen (” t a r g e t . handchecked” , ” r ”) ;
// prov ided b inary because the PoC might not l i k e the output o f your compi ler
a s s e r t (f) ;
f i l e s z = f r ead (f i l e , 1 , s izeof f i l e , f) ; // Read the en t i r e f i l e
f c l o s e (f) ;

}
void w r i t e f i l e (){

FILE ∗ f= fopen (” l i bpoc . so ” , ”w”) ;
fw r i t e (f i l e , s izeof f i l e , 1 , f) ;
f c l o s e (f) ;
system (”chmod +x l i bpoc . so ”) ;

}
Elf64 Phdr ∗ f ind dynamic (El f64 Phdr ∗phdr){

//Find the PT DYNAMIC program header
for (; phdr−>p type != PT DYNAMIC; phdr++);
return phdr ;

}
u in t 64 t f i nd dyn s t r (El f64 Phdr ∗phdr){

//Find the address o f the dynamic s t r i n g t a b l e
phdr = f ind dynamic (phdr) ;
Elf64 Dyn ∗dyn ;
for (dyn = f i l e + phdr−>p o f f s e t ; dyn−>d tag != DT STRTAB; dyn++);
return dyn−>d un . d ptr ;

}
int main ()
{

r e a d f i l e () ;
e l f mag i c () ;
w r i t e f i l e () ;

}

−−−−−−−−−−−−−−−−−−−− Makef i l e −−−−−−−−−−−−−−−−−−−−−−−
%.so : %.c

gcc − f p i c −shared −Wl,−soname ,$@ −o $@ $ˆ
a l l : l i bgood . so l i b e v i l . so makepoc t a r g e t l i bpo c . so a l l i s w e l l

l i bpo c . so : t a r g e t . handchecked makepoc
. /makepoc

c l ean :
rm −f ∗ . so ∗ . o t a r g e t makepoc a l l i s w e l l

7

t a r g e t : t a r g e t . c l i bgood . so l i b e v i l . so
echo ”#de f i n e INTERP \” ‘ objcopy −O binary −j . i n t e rp \
/bin / l s /dev/ stdout ‘\” ” >> i n t e rp . inc && gcc −o t a r g e t \
−Os −Wl,− rpath , . −Wl,− e foo −L . −shared −fPIC −lgood ta r g e t . c \
&& s t r i p −K foo $@ && echo ’ copy ta r g e t to t a r g e t . handchecked by hand ! ’

t a r g e t . handchecked : t a r g e t
cp $< $@; echo ”Beware , you compiled t a r g e t y ou r s e l f . \
YMMV with your compi ler , t h i s i s j u s t a f r i e n d l y poc”

a l l i s w e l l : a l l i s w e l l . c l i bpo c . so
gcc −o $@ −Wl,− rpath , . −l poc −L . $<

makepoc : makepoc . c
gcc −ggdb −o $@ $<

/∗ −−−−−−−−−−−−−−−−−−−− t a r g e t . c −−−−−−−−−−−−−−−−−−−−−−−∗/
#include <s t d i o . h>
#include ” i n t e rp . inc ”
const char my interp [] a t t r i b u t e ((s e c t i o n (” . i n t e rp ”))) = INTERP;
extern int func () ;
int f oo (){

// p r i n t f (” Ca l l i n g func \n”) ;
func () ;
e x i t (1) ; //Needed , because the r e i s no c r t . o

}

/∗ −−−−−−−−−−−−−−−−−−−− l i b g o od . c −−−−−−−−−−−−−−−−−−−−−−−∗/
#include <s t d i o . h>
int func (){ p r i n t f (”He l l o World\n”) ; }

/∗ −−−−−−−−−−−−−−−−−−−− l i b e v i l . c −−−−−−−−−−−−−−−−−−−−−−−∗/
#include <s t d i o . h>
int func (){ system (”/bin / sh”) ; }

/∗ −−−−−−−−−−−−−−−−−−−− a l l i s w e l l . c −−−−−−−−−−−−−−−−−−−−−−−∗/
extern int f oo () ;
int main (int argc , char ∗∗ argv)
{

f oo () ;
}

3.1 Neighborly Greetings and \cite{}s:

Our gratitude goes to Silvio Cesare, the grugq, klog, mayhem, and Nergal, whose brilliant articles in Phrack
and elsewhere taught us about the ELF format, runtime, and ABI. Special thanks go to the ERESI team, who
set a high standard of ELF (re)engineering to follow. Skape’s article Uninformed 6:3 led us to re-examine
ELF in the light of weird machines, and we thank .Bx for showing how to build those to full generality.
Last but not least, our view was profoundly shaped by Len Sassaman and Meredith L. Patterson’s amazing
insights on parser differentials and their work with Dan Kaminsky to explore them for X.509 and other
Internet protocols and formats.

8

4 The Pastor Manul Laphroaig’s First Epistle to Hacker Preachers

of All Hats, in the sincerest hope that we might shut up about

hats, and get back to hacking.

First, I must caution you to cut out the Sun Tsu quotes. While every good speaker indulges in quoting from
good books of fiction or philosophy, verily I warn you that this can lead to unrighteousness! For when we
tell beginners to study ancient philosophy instead of engineering, they will become experts in the Art of War
and not in the Art of Assembly Language! They find themselves reading Wikiquote instead of Phrack, and
we are all the poorer for it!

I beg you: Rather than beginning your sermons with a quote from Sun Tzu, begin them with nifty little
tricks which the laity can investigate later. For example, did you know that ‘strings -n 20 /.bitcoin/blk0001.dat‘
dumps ASCII art portraits of both Saint Sassaman and Ben Bernanke? This art was encoded as fake public
keys used in real transactions, and it can’t be removed without undoing all Bitcoin transactions since it was
inserted into the chain. The entire Bitcoin economy depends upon the face of the chairman of the Fed not
being removed from its ledger! Isn’t that clever?

Speaking of cleverness, show respect for it by citing your scripture in chapter and verse. Phrack 49:14
tells us of Aleph1’s heroic struggle to explain the way the stack really works, and Uninformed 6:2 is the
harrowing tale of Johnny Cache, H D Moore, and Skape exploiting the Windows kernel’s Wifi drivers with
beacon frames and probe responses. These papers are memories to be cherished, and they are stories worth
telling. So tell them! Preach the good word of how the hell things actually work at every opportunity!

Don’t just preach the gospel, give the good word on paper. Print a dozen copies of a nifty paper and
give them away at the next con. Do this at Recon, and you will make fascinating friends who will show you
things you never knew, no matter how well you knew them before. Do this at RSA–without trying to sell
anything–and you’ll be a veritable hero of enlightenment in an expo center of half-assed sales pitches and
booth babes. Kill some trees to save some souls!

Don’t just give papers that others have written. Give early drafts of your own papers, or better still your
own documented 0day. Nothing demonstrates neighborliness like the gift of a good exploit.

Further, I must warn you to ignore this Black Hat / White Hat nonsense. As a Straw Hat, I tell you
that it is not the color of the hat that counts; rather, it is the weave. We know damned well that patching a
million bugs won’t keep the bad guys out, just as we know that the vendor who covers up a bug caused by his
own incompetence is hardly a good guy. We see righteousness in cleverness, and we study exploits because
they are so damnably clever! It is a heroic act to build a debugger or a disassembler, and the knowledge of
how to do so ought to be spread far and wide.

First, consider the White Hats. Black Hats are quick to judge these poor fellows as do-gooders who
kill bugs. They ask, “Who would want to kill such a lovely bug, one which gives us such clever exploits?”
Verily I tell you that death is a necessary part of the ecosystem. Without neighbors squashing old bugs,
what incentive would there be to find more clever bugs or to write more clever exploits? Truly I say to the
Black Hats, you have recouped every dollar you’ve lost on bugfixes by the selective pressure that makes your
exploits valuable enough to sustain a market!

Next, consider the Black Hats. White Hat neighbors are still quicker to judge these poor fellows, not so
much for selling their exploits as for hoarding their knowledge. A neighbor once told me, “Look at these
sinners! They hide their knowledge like a candle beneath a basket, such that none can learn from it.” But
don’t be so quick to judge! While it’s true that the Black Hats publish more slowly, do not mistake this
for not publishing. For does not a candle, when hidden beneath a basket, soon set the basket alight and
burn ten times as bright? And is not self-replicating malware just a self-replicating whitepaper, written in
machine language for the edification of those who read it? Verily I tell you, even the Black Hats have a
neighborliness to them.

So please, shut about hats and get back to the code.
—M. Laphroaig
Postscript: This little light of mine, I’m gonna let it shine!

9

5 Returning from ELF to Libc

by Rebecca “Bx” Shapiro

Dear friends,
As you may or may not know, demons lurk within ELF metadata. If you have not yet been introduced

to these creatures, please put this paper down and take a look at either our talk given at 29C39, or our
soon-to-be released WOOT publication (in August 2013).

Although the ability to treat the loader as a Turing-complete machine is Pretty Neat, we realize that
there are a lot of useful computation vectors built right into the libraries that are mapped into the loader
and executable’s address space. Instead of re-inventing the wheel, in this POC sermon we’d like to begin
exploring how to harness the power given to us by the perhaps almighty libc.

The System V amd64 ABI scripture10 in combination with the eglibc-2.17 writings have provided us ELF
demon-tamers with the mighty useful IFUNC symbol. Any symbol of type IFUNC is treated as an indirect
function – the symbol’s value is treated as a function, which takes no arguments, and whose return value is
the patch.

The question we will explore from here on is: Can we harness the power of the IFUNC to invoke a piece
of libc?

After vaguely thinking about this problem for a couple of months, we have finally made progress towards
the answer.

Consider the exit() library call. Although one may question why we would want to craft metadata that
causes a exit() to be invoked, we will do so anyway, because it is one of the simplest calls we can make,
because the single argument it takes is not particularly important, and success is immediately obvious.

To invoke exit(), we must lookup the following information when we are compiling the crafted metadata
into some host executable. This is accomplished in three steps, as we explain in our prior work.

1. The location of exit() in the libc binary.

2. The location of the host executable’s dynamic symbol table.

3. The location of the host executable’s dynamic relocation table.

To invoke exit(), we must accomplish the following during runtime:

1. Lookup the base address of libc.

2. Use this base address to calculate the location of exit() in memory.

3. Store the address of exit() in a dynamic IFUNC symbol.

4. Cause the symbol to be resolved.

. . . and then there was exit()!

Our prior work has demonstrated how to accomplish the first two tasks. Once the first two tasks have
been completed at runtime, we find ourselves with a normal symbol (which we will call symbol 0) whose
value is the location of exit(). At this point we have two ways to proceed: we can

(1) have a second dynamic symbol (named symbol 1) of type IFUNC and have relocation entry of type
R X86 64 64 which refers to symbol 0 and whose offset is set to the location of symbol 1’s values, causing
the location of ext() to be copied into symbol 1,

-or-
(2) update the type of the symbol that already has the address of exit() to that it becomes an IFUNC.

This can be done in a single relocation entry of type R X86 64, whose addend is that which is copied to the

9https://www.youtube.com/watch?v=dnLYoMIBhpo
10http://www.uclibc.org/docs/psABI-x86_64.pdf

10

first 8 bytes of symbol 0. If we set the addend to 0x0100000a00000000, we will find that the symbol type
will become 0x0a (IFUNC), the symbol shndx will be set as 01 so the IFUNC is treated as defined, and the
other fields in the symbol structure will remain the same.

After our metadata that sets up the IFUNC, we need a relocation entry of type R X86 64 64 that
references our IFUNC symbol, which will cause exit() to be invoked.

At this moment, you may be wondering how it may be possible to do more interesting things such as have
control of the argument passed to the function call. It turns out that this problem is still being researched.
In eglibc-2.17, at the time the IFUNC is called, the first argument is and will always be 0, the second
argument is the address of the function being called, and the third argument the addressed of the symbol
being referenced. Therefore at this level exec(0) is always called. It will clearly take some clever redirection
magic to be able to have control over the function’s arguments purely from ELF metadata.

Perhaps you will see this as an opportunity to go on a quest of ELF-discovery and be able to take this
work to the next level. If you do discover a path to argument control, we hope you will take the time to
share your thoughts with the wider community.

Peace out, and may the Manul always be with you.

11

6 GTFO or #FAIL

by FX of Phenoelit

To honor the memory of the great Barnaby Jack, we would like to relate the events of a failed POC. It
happened on the second day of the Black Hat Abu Dhabi conference in 2010 that the hosts, impressed by
Barnaby’s presentation on ATMs,11 pointed out that the Emirates Palace hotel features a gold ATM12. So
they asked him to see if he could hack that one too.

Never one to reject challenges or fun to be had, Barns gathered a bunch of fellow hackers, who shall
remain anonymous in this short tale, to accompany him to the gold ATM. Sufficient to say, yours truly was
among them. Thus it happened that a bunch of hackers and a number of hosts in various white and pastel
colored thawbs went to pay the gold ATM a visit. Our hosts had assured everyone in the group that it was
totally OK for us to hack the machine, as long as they were with us.

6.1 The POC

While the gold ATM, being plated with gold itself, looked rather solid13, a look at the back of the machine
revealed a messy knot of cables, the type of wiring normally found on a Travis Goodspeed desk. Since the
machine updates the gold pricing information online, we obviously wanted to have a look at the traffic. We
therefore disconnected the flimsy network connections and observed the results, of which there were initially
none to be observed, except for the machine to start beeping in an alarming way.

Nothing being boring, we decided to power cycle the machine and watch it boot. For that, yours truly
got behind it and used his considerable power cable unplugging skills to their fullest extent. Interestingly
enough, the gold ATM stayed operational, obviously being equipped with the only Uninterruptable Power
Source (UPS) in the world that actually provides power when needed.

Reappearing from behind the machine, happily holding the unplugged network and power cables, yours
truly observed the group of hosts being already far away and the group of hackers following close behind.
Inverting their vector of movement, the cause of the same became obvious with the approaching storm
troopers of Blackwater quality and quantity. Therefore, yours truly joined the other hackers at considerable
speed.

6.2 The FAIL

Needless to say, what followed was a tense afternoon of drinking, waiting, and considering exit scenarios from
a certain country, depending on individual citizenships, while powers to be were busy turning the incident
into a non-issue.

The #FAIL was quickly identified as the inability of the fellowship of hackers to determine rank and
therefore authority of people that all wear more or less the same garments. What had happened was that
the people giving authority to hack the machine actually did not possess said authority in the first place or,
alternatively, had pissed off someone with more authority.

The failed POC pointed out the benefits of western military uniforms and their rank insignia quite clearly.

6.3 Neighborly Greetings

Neighborly greetings are in order to Mr. Nils, who, upon learning about the incident, quietly handed the
local phone number of the German embassy to yours truly.

11https://www.blackhat.com/html/bh-ad-10/bh-ad-10-archives.html\#Jack
12http://www.nydailynews.com/2.1353/abu-dhabi-emirates-palace-hotel-sports-vending-machine-gold-article-1.

449348
13http://www.gold-to-go.com/en/company/history/

12

7 A Call for PoC

by Rt. Revd. Pastor Manul Laphroaig

We stand, sit, or simply relax and chill on the shoulders of the giants, Phrack and Uninformed. They
pushed the state-of-the-art forward mightily with awesome, deep papers and at times even with poetry to
match. And when a single step carries you forward by a measure of academic years, it’s OK to move slowly.

But for the rest of us dwarves, running around or lounging on those broad shoulders can be so much fun!
A hot PoC is fun to toss to a neighbor, and who knows what some neighbor will cook up with it for the
shared roast of the vuln-beast? A neighbor might think, “my PoC is unexploitable” or “it is too simple,”
but verily I tell you, one neighbor’s PoC is the missing cog for another neighbor’s 0day. How much PoC is
hoarded and lies idle while its matching piece of PoC wastes away in another hoard? Let’s find out!

7.1 Author guidelines

It is easy to prepare your paper for submission to IJPoC‖GTFO in seven easy steps.

1. If you have a section called Introduction or some such nonsense, replace it with a two-sentence statement
of why the reader who doesn’t care about the subject after reading your abstract should care, and a
link to a good tutorial. Some caring neighbor must have spent a great deal of effort writing it already,
and who needs a hundred little one-pagers, all alike, on top of that?

2. If you have a section called Motivation, see item 1.

3. Scan your paper for tables. If you find a table, replace it with an equivalent piece of code. Repeat.
This is important.

4. Scan your paper for diagrams of the boxes-and-arrows kind. Unless the boxes are code basic blocks,
there had better be text on the arrows detailing exactly what is being sent on that arrow. If in doubt,
replace with equivalent code.

5. If you have a section called Related work, replace it with a neighborly Howdy to neighbors who did
that work, and cite it in the text of your paper that it’s related to.

6. If you have a section called Conclusion, replace it with a Howdy to neighbors who care. They have
already read your paper and need not be told what they just read.

7. Make up and apply the remaining steps in the spirit of the above, and may the Pastor or his trusty
Editor smile upon your submission!

7.2 Other Departments

For the proper separation of the goats and the lambs, there shall be various Departments. Each Department
shall have an Editor, excepting those that shall have two or more, so that they may fight with each other over
Important Decisions, and neighbors far and wide shall not be denied a proper helping of Hacker Drama.14

Editor at Large Rt. Revd. Pastor M.L.
Dept. of Bringing APT Home Cultural attaché of the 41st Directorate
Dept. of Fail FX of Phenoelit
Ethics Board The Grugq
Dept. of Busting BS pipacs
Poet Laureate Ben Nagy15

Dept. of Rejections Academic Refugee
Dept. of Drama Xbf
Dept. of PHY Michael Ossmann

14All such Drama will be helpfully documented under the /drama/ URL, which is the practice we respectfully recommend to
all other esteemed venues.

13

Bullshit Busting Department. Remember that feeling when you are reading a paper and come to a
table or graph that just makes you wonder if bovine excreta have been used in its production? Well neighbors,
wonder no more, but send it to us and trust our world-renowned experts to call it out right and proper!

Rejected-from: Department of Rejections. The Pastor admonishes us, “Read the Fucking Paper!”
and sometimes also, “Write the Fucking Paper!” So even though sharing a drink, a story, and a hack with a
neighbor is still the most efficient method of knowledge transmission16, diligent neighbors also write papers.
And when a paper is written, why not enter it into the lottery otherwise known as the Academic Conference
Peer Review Process?

The process goes thusly: first you submit a paper, then you receive a rejection, along with the collectible
essays called Reviews. Sometimes these little pieces of text have little to do with your paper, but mostly
they explain how reviewers misunderstood what you had to say, and how they couldn’t care less. The art
of Reviewing is ancient, and goes back to ritual insults that rivals bellowed at each other before or instead
of battle. Although not all Reviewers take their art seriously, occasionally they manage to plumb the true
depths of trolling. In the words of the Pastor, “If you stand under the Ivory Tower long enough, you will
never want for fertilizer.”

The neighbor who collects the most creatively insulting Reviews wins. Submissions will be judged by our
Editors, and best ones will receive prizes.

15If you don’t trust our taste, read Ben’s masterpiece https://lists.immunityinc.com/pipermail/dailydave/2012-August/
000187.html, and judge for yourself!

16For in-depth discussion, see [PXE] http://ph-neutral.darklab.org/PXE.txt and [PXE2] http://ph-neutral.darklab.
org/PXE2.txt

14

